【文档说明】江西省信丰中学2019-2020学年高二上学期数学(理)周考(7)含答案.doc,共(12)页,794.000 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-606b3a65d0b9216741815dfed0504b8c.html
以下为本文档部分文字说明:
高中数学周测/单元测试学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.点()2,1−到直线250xy+−=的距离为()A.1B.3
C.2D.52.下列关于随机抽样的说法不正确的是()A.简单随机抽样是一种逐个抽取不放回的抽样B.系统抽样和分层抽样中每个个体被抽到的概率都相等C.有2008个零件,先用随机数表法剔除8个,再用系统抽样方法抽取抽取2
0个作为样本,每个零件入选样本的概率都为1/2000D.当总体是由差异明显的几个部分组成时适宜采取分层抽样3.已知函数()sin()(0,0,)fxAxA=+−的部分图象如图所示,则函数()
fx的解析式为()A.1()2sin()24fxx=+B.13()2sin()24fxx=+C.1()2sin()24fxx=−D.13()2sin()24fxx=−4.某四棱锥的三视图如图所示,则该四棱锥的外接球半径为()A.1B.32C.22D.
125.在正项等比例数列na中,已知35·64aa=,则17aa+的最小值为()A.64B.32C.16D.86.空间四边形ABCD的各顶点坐标分别是()()()()131111202420,,,,,,,,,,,−−DCBA,E,F分别是AB与CD的中点,则EF的长为()
A.5B.6C.22D.37.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结
论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重比为58.79kg8.圆222430xyxy+
++−=上到直线:10lxy++=之距离为2的点有()个A.1B.2C.3D.49.设表示平面,ba,表示直线,给定下列四个命题:①⊥⊥bbaa,//;②⊥⊥baba,//;③//,bbaa⊥⊥;④baba//,⊥⊥.其中
正确命题的个数有()A.1个B.2个C.3个D.4个10.改革开放四十年以来,北京市居民生活发生了翻天覆地的变化.随着经济快速增长、居民收入稳步提升,消费结构逐步优化升级,生活品质显著增强,美好生活蓝图正在快速构建.北京市城镇居民人均消费支出从1998年的7500元增长到2
017年的40000元.1998年与2017年北京市城镇居民消费结构对比如下图所示:1998年北京市城镇居民消费结构2017年北京市城镇居民消费结构则下列叙述中不正确...的是()A.2017年北京市城镇居民食品支出占比..同1998年相比大幅度降低B.2017年北京市城镇
居民人均教育文化娱乐类支出同1998年相比有所减少C.2017年北京市城镇居民医疗保健支出占比..同1998年相比提高约D.2017年北京市城镇居民人均交通和通信类支出突破5000元,大约是1998年的14倍11.已知、
取值如下表:0145681.31.85.66.17.49.3从所得的散点图分析可知:与线性相关,且,则()A.B.C.D.12.如图,点为正方形的中心,为正三角形,平面平面是线段的中点,则()A.,且直线是相交直线B.,且直线是相交直线C.,且直线是异面直线D.,且直线是异面直线评卷人得分二、
填空题13.已知点(3,1,4)A−−,则点A关于x轴对称的点的坐标为。14.若样本121,1,,1nxxx+++,的平均数为10,方差为2,则对于样本122,2,,2nxxx+++,其平均数和方差的和为_________
___.15.已知某中学高三学生共有800人参加了数学与英语水平测试,现学校决定利用随机数表法从中抽取100人的成绩进行统计,先将800人按001,002,…,800进行编号.如果从第8行第7列的数开始从左向右读,(下面是随机数表的第7行至第9行)8442175
33157245506887704744767217633502683925316591692753562982150717512867363015807443913263321134278641607825207443815则最先抽取的2个
人的编号依次为_____.16.在样本的频率分布直方图中,共有9个小长方形,若中间一个长方形的面积等于其他8个小长方形面积的和的13,且样本容量为200,则中间一组的频数为________.评卷人得分三、解答题17.在
锐角中,分别为角所对的边,且(Ⅰ)确定角的大小;(Ⅱ)若,且的面积为,求的值.18.设等差数列na的公差为d,d为整数,前n项和为nS,等比数列nb的公比为q,已知11ab=,22b=,dq=,10100S=,*nN(1)求数列na与
nb的通项公式;(2)设nnnacb=,求数列nc的前n项和为nT.19.如图,在正方形ABCD中,2,ABEF=,分别为,BCCD的中点,将,ABEADF,CEF分别沿着,,AEAFEF折叠成一个三棱锥,,,B
CD三点重合于点V.(1)求证:VEAF⊥;(2)求点V到平面AEF的距离.20.如图是某单位职工的月收入情况画出的样本频率分布直方图,已知图中第一组的频数为4000,请根据该图提供的信息,解答下列问题.(1)为了分析职工的收入与
年龄、学历等方面的关系,必须从样本中按月收入用分层抽样方法抽出100人作进一步分析,则月收入在[1500,2000)的这组中应抽取多少人?(2)试估计样本数据的中位数与平均数.21.已知圆()22:416Cxy+-=,直线()():31140lmxmy++--=.(1)求
直线l所过定点A的坐标;(2)求直线l被圆C所截得的弦长最短时m的值及最短弦长.(3)在(2)的前提下,若P为直线l上的动点,且圆C上存在两个不同的点到点P的距离为1,求点P的横坐标的取值范围.22.现代社
会,“鼠标手”已成为常见病,一次实验中,10名实验对象进行160分钟的连续鼠标点击游戏,每位实验对象完成的游戏关卡一样,鼠标点击频率平均为180次/分钟,实验研究人员测试了实验对象使用鼠标前后的握力变化,前臂表面肌电频率()等指标.(I)10名实验对象实验前、后握力(单位:)测试结果如下:实验前
:346,357,358,360,362,362,364,372,373,376实验后:313,321,322,324,330,332,334,343,350,361完成茎叶图,并计算实验后握力平均值比实验前握力的平均值下降了多少?(Ⅱ)实验过程中测得
时间(分)与10名实验对象前臂表面肌电频率()的中的位数()的九组对应数据为,.建立关于时间的线性回归方程;(Ⅲ)若肌肉肌电水平显著下降,提示肌肉明显进入疲劳状态,根据(Ⅱ)中9组数据分析,使用鼠标多少分钟就该进行休息了?参考数据:;参考公式:回归方程中斜率和截距的最小二乘估计公式分别为:,参
考答案1.D2.C3.B4.B5.C6.A7.D8.C9.B10.B11.A12.B【详解】如图所示,作于,连接,过作于.连,平面平面.平面,平面,平面,与均为直角三角形.设正方形边长为2,易知,.,故选B.13.(-3,-1,4)14.1315.165;53516.5017
.(1)(2)(1)由及正弦定理得,,,又是锐角三角形,(2)由面积公式得,即由余弦定理得,即,即18.(1)na=2n﹣1,12nnb−=(2)12362nnnT−+=−解:(1)有题意可得:1110451002adad+==
,解得1929ad==(舍去)或112ad==,所以na=2n﹣1,12nnb−=.(2)∵nnnacb=,1212nnnc−−=,∴2313572112222nnnT−−=+++++①,234
5113579212222222nnnT−=++++++②,①﹣②可得221111212323222222nnnnnnT−−+=++++−=−,故12362nnnT−+=−.19.(1)见证明;(2)23(1)证明:由题意得,VEVFVEVA⊥⊥,且VFVAV=,所以VE
^平面VAF,又AF平面VAF,所以VEAF⊥.(2)解:设点V到平面AEF的距离为h,则有13VAEFAEFVSh−=,又113222(12)11222AEFABEADFCEFABCDSSSSS=−−−=−−=正方形,∴131322VAEFVhh−==.由(1)
知,1111(12)13323EVAFVAFVSVE−===,又VAEFEVAFVV−−=,∴1123h=,解得23h=,即点V到平面AEF的距离为23.20.(1)20(2)17750,1962.5(1)由题知,月收入在[1000,1500)的频率为0.0008×500
=0.4,又月收入在[1000,1500)的有4000人,故样本容量n40000.4==10000.又月收入在[1500,2000)的频率为0.0004×500=0.2,月收入在[1500,2000)的人数为0.2×10000=2000,从10000人中用分层抽样的方法抽出100人,
则月收入在[1500,2000)的这组中应抽取100×200010000=20(人).(2)月收入在[1000,2000)的频率为0.4+0.2=0.6>0.5,故样本数据的中位数为1500+0.50.40.0004−=1500
+250=1750.由频率分布直方图可知,月收入在[3000,3500)的频率为()10.00080.00040.00030.000250.00015000.075−++++=故样本数据的平均数为125
00.417500.222500.1527500.12532500.07537500.051962.5+++++=21.(1)()1,3A;(2)214(3)246214214246,,2222−−++.
(1)将直线l的方程整理为:()()340mxyxy−++−=令3040xyxy−=+−=解得定点()1,3A.(2)当lCA⊥时,直线l被圆C所截得的弦长最短.343111101CAlmkkm−+=−=−−−,解得1m=−圆心到直线的距离为2dAC==最短弦长为:22
22162214rd−=−=.(3)由(2)知点P在直线:2lyx=+上,故设()00,2Pxx+.依题以点P为圆心,1为半径的圆与圆C相交.当圆P与圆C相内切时,()220023CPxx=+−=,解得02142x=,当圆P与圆C相外切时,()22
0025CPxx=+−=解得02462x=,由题意得0246214214246,,2222x−−++.22.(I)茎叶图见解析,;(Ⅱ);(Ⅲ)60分钟.(Ⅰ)根据题意得到茎叶图如下图所示:
由图中数据可得,,∴,∴故实验前后握力的平均值下降.(Ⅱ)由题意得,,,又,∴,∴,∴关于时间的线性回归方程为.(Ⅲ)九组数据中40分钟到60分钟的下降幅度最大,提示60分钟时肌肉已经进入疲劳状态,故使用鼠标60分钟就该休息了.