【文档说明】2021-2022学年新教材人教A版数学必修第一册课时作业:5.3.1 诱导公式二、三、四含解析.docx,共(7)页,42.419 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-5fe1e2a70a042fc5d28080b9a6a1e622.html
以下为本文档部分文字说明:
课时作业(四十五)诱导公式二、三、四1.cos-79π6的值为()A.-12B.12C.-32D.322.已知sinθ=15,则cos(450°+θ)的值是()A.15B.-15C.-265D.2653
.若α是第三象限角,则点()tan()3π-α,cos()π+α在()A.第一象限B.第二象限C.第三象限D.第四象限4.化简cos(2π+α)tan(π+α)sin(π-α)sin(π+α)cos(-α)=()A.1B.-1C
.tanαD.-tanα5.已知cos31°=m,则sin239°tan149°的值是()A.1-m2mB.1-m2C.-1-m2mD.-1-m26.(多选)下列化简正确的是()A.tan(π+1)=tan1B.sin(-α)tan(360°-
α)=cosαC.sin(π-α)cos(π+α)=tanαD.cos(π-α)tan(-π-α)sin(2π-α)=17.求值cos600°=________.8.计算sin()-1560°cos()-930°-cos()-1380°·sin1410°等于________.9.化简:
cos(θ+4π)·cos2(θ+π)·sin2(θ+3π)sin(θ-4π)sin(5π+θ)cos2(-π+θ).10.已知tan(π+α)=-12,求下列各式的值.(1)2cos(π-α)-3sin(π+α)4c
os(α-2π)+sin(4π-α);(2)sin(α-7π)·cos(α+5π).[提能力]11.化简1-2sin(π-2)cos(π-2)=()A.±(cos2-sin2)B.sin2-cos2C.cos2-sin2D.sin2+cos
212.(多选)sin2nπ+2π3·cosnπ+4π3(n∈Z)的值为()A.32B.34C.-32D.-3413.设函数f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β都是非零实数,且满足f(2020)=-
1,则f(2021)的值为________.14.已知角α的终边经过点P(3t,1),且cos(π+α)=35,则tanα的值为________,t的值为________.15.已知f(α)=sin(π+α)cos(2π-α)tan(-α)tan(-π-α)si
n(-π-α).(1)化简f(α);(2)若α是第三象限角,且sin(α-π)=15,求f(α)的值;(3)若α=-31π3,求f(α)的值.[培优生]16.在△ABC中,若sin(2π-A)=-2sin(π-B),3cosA=-2cos(
π-B),求△ABC的三个内角.课时作业(四十五)诱导公式二、三、四1.解析:cos-79π6=cos-12π-7π6=cos-7π6=cos7π6=cosπ+π6=-cosπ6=-32.故选C.答案:C2.解析:cos(450°+θ)=c
os(90°+θ)=-sinθ=-15.故选B.答案:B3.解析:因为α是第三象限角,所以tan()3π-α=-tanα<0,cos()π+α=-cosα>0,所以点(tan(3π-α),cos(π+α))在第二象限.故选B.答案:B4.解析:原式=cos
α·tanα·sinα(-sinα)·cosα=-tanα.故选D.答案:D5.解析:sin239°tan149°=sin(180°+59°)·tan(180°-31°)=-sin59°(-tan31°)
=-sin(90°-31°)·(-tan31°)=-cos31°·(-tan31°)=sin31°=1-cos231°=1-m2.故选B.答案:B6.解析:A正确;B正确,sin(-α)tan(360°-α)=-sinα-tanα=cosα;C错,s
in(π-α)cos(π+α)=sinα-cosα=-tanα;D错,cos(π-α)tan(-π-α)sin(2π-α)=-cosα·(-tanα)-sinα=-1.故选AB.答案:AB7.解析:cos600°=cos240°=-cos60°=-12.答案:-128.解析:sin(-1560°)
cos(-930°)-cos(-1380°)·sin1410°=sin(-4×360°-120°)cos(-3×360°+150°)-cos(-4×360°+60°)sin(4×360°-30°)=sin(
-120°)cos150°-cos60°sin(-30°)=-32×-32+12×12=34+14=1.答案:19.解析:原式=cosθ·cos2θ·sin2θsinθ·(-sinθ)·cos2θ
=-cosθ.10.解析:∵tan(π+α)=-12,则tanα=-12,(1)原式=-2cosα-3(-sinα)4cosα+sin(-α)=-2cosα+3sinα4cosα-sinα=-2+3tanα4-tanα=-2+3×
-124--12=-79.(2)原式=sin(-6π+α-π)·cos(4π+α+π)=sin(α-π)·cos(α+π)=-sinα(-cosα)=sinαcosα=sinαcosαsin2α+cos2α=tanαtan2α+1=-25.11.解析:∵sin(π-2)=sin
2,cos(π-2)=-cos2,∴1-2sin(π-2)cos(π-2)=[sin(π-2)-cos(π-2)]2=(sin2+cos2)2=|sin2+cos2|,∵sin2>0,cos2<0,且|sin2|>|cos2|,∴1-2sin(π-
2)cos(π-2)=sin2+cos2.故选D.答案:D12.解析:①当n为奇数时,sin2nπ+2π3·cosnπ+4π3=sin2π3·cosπ+4π3=sinπ-π
3·cos2π+π3=sinπ3·cosπ3=32×12=34.②当n为偶数时,sin2nπ+2π3·cosnπ+4π3=sin2π3·cos4π3=sinπ-π3·cosπ+π3=sinπ3·-cosπ3=32×
-12=-34.答案:BD13.解析:∵f(2020)=asin(2020π+α)+bcos(2020π+β)=-1,∴f(2021)=asin(2021π+α)+bcos(2021π+β)=asi
n[π+(2020π+α)]+bcos[π+(2020π+β)]=-[asin(2020π+α)+bcos(2020π+β)]=1.答案:114.解析:∵cos(π+α)=-cosα=35∴cosα=-35=3t9t2+1<0解
得t=-14∴tanα=13t=-43.答案:-43-1415.解析:(1)f(α)=-sinαcos(-α)·(-tanα)(-tanα)sinα=-cosα.(2)∵sin(α-π)=-sinα=15,∴sinα=-15.又α是第三象
限角,∴cosα=-1-sin2α=-1-125=-265.∴f(α)=-cosα=265.(3)∵α=-31π3=-6×2π+5π3,∴f(α)=f-31π3=-cos-6×2π+5π3=-cos5π3=-cos2π-π3=-cosπ3=-12.16.解析:由题
意得sinA=2sinB,3cosA=2cosB,平方相加得2cos2A=1,cosA=±22,又因为A∈(0,π),所以A=π4或3π4.当A=3π4时,cosB=-32<0,所以B∈π2,π,所以A,B均为钝角,不合题意,舍去.所以A=π4,cosB=32
,所以B=π6,所以C=7π12.综上所述,A=π4,B=π6,C=7π12.获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com