【精准解析】2021新高考数学(江苏专用)课时精练:2.2函数的单调性【高考】

DOC
  • 阅读 0 次
  • 下载 0 次
  • 页数 8 页
  • 大小 149.438 KB
  • 2024-11-06 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
【精准解析】2021新高考数学(江苏专用)课时精练:2.2函数的单调性【高考】
可在后台配置第一页与第二页中间广告代码
【精准解析】2021新高考数学(江苏专用)课时精练:2.2函数的单调性【高考】
可在后台配置第二页与第三页中间广告代码
【精准解析】2021新高考数学(江苏专用)课时精练:2.2函数的单调性【高考】
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的3 已有0人购买 付费阅读2.40 元
/ 8
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】【精准解析】2021新高考数学(江苏专用)课时精练:2.2函数的单调性【高考】.docx,共(8)页,149.438 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-36e1e8307b2491198015f335da5eb30f.html

以下为本文档部分文字说明:

1.下列函数中,在区间(0,+∞)上为增函数的是()A.y=ln(x+2)B.y=-x+1C.y=12xD.y=x+1x答案A解析函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.函数f(x)=1-1x-1()A.在(-1,+∞)上单调递增B.在

(1,+∞)上单调递增C.在(-1,+∞)上单调递减D.在(1,+∞)上单调递减答案B解析f(x)图象可由y=-1x图象沿x轴向右平移一个单位长度,再向上平移一个单位长度得到,如图所示.3.(2019·沧州七校联考)函数f(x)=l

og0.5(x+1)+log0.5(x-3)的单调递减区间是()A.(3,+∞)B.(1,+∞)C.(-∞,1)D.(-∞,-1)答案A解析由已知易得x+1>0,x-3>0,即x>3,f(x)=log0.5

(x+1)+log0.5(x-3)=log0.5(x+1)(x-3),x>3,令t=(x+1)(x-3),则t在[3,+∞)上单调递增,又0<0.5<1,∴f(x)在(3,+∞)上单调递减.4.若f(x)=-x2+2ax与g(x)=ax+1在区间[1,2]上都是减函数,则实数a的取值范围

是()A.(-1,0)∪(0,1)B.(-1,0)∪(0,1]C.(0,1)D.(0,1]答案D解析因为f(x)=-x2+2ax在[1,2]上是减函数,所以a≤1,又因为g(x)=ax+1在[1,2]上是减函数,所以a>0,所以0<a≤1.5.已知函数f(x)=x|x+

2|,则f(x)的单调递减区间为()A.[-2,0]B.[-2,1]C.[-2,-1]D.[-2,+∞)答案C解析由于f(x)=x|x+2|=x2+2x,x≥-2,-x2-2x,x<-2,当

x≥-2时,y=x2+2x=(x+1)2-1,显然,f(x)在[-2,-1]上单调递减;当x<-2时,y=-x2-2x=-(x+1)2+1,显然,f(x)在(-∞,-2)上单调递增.综上可知,f(x)的单调递减区间是[-2,-1

].6.(2020·青岛模拟)已知定义在R上的奇函数f(x)在[0,+∞)上单调递减,若f(x2-2x+a)<f(x+1)对任意的x∈[-1,2]恒成立,则实数a的取值范围为()A.-∞,134B.(-

∞,-3)C.(-3,+∞)D.134,+∞答案D解析依题意得f(x)在R上是减函数,所以f(x2-2x+a)<f(x+1)对任意的x∈[-1,2]恒成立,等价于x2-2x+a>x+1对任意的x∈[-1,2]恒成立,等价于a>-x2+3x+1

对任意的x∈[-1,2]恒成立.设g(x)=-x2+3x+1(-1≤x≤2),则g(x)=-x-322+134(-1≤x≤2),当x=32时,g(x)取得最大值,且g(x)max=g32=134,因此a>

134,故选D.7.(多选)已知π为圆周率,e为自然对数的底数,则()A.πe<3eB.3e-2π<3πe-2C.logπe<log3eD.πlog3e>3logπe答案CD解析已知π为圆周率,e为自然对数的底数,

∴π>3>e>2,∴π3e>1,πe>3e,故A错误;∵0<3π<1,0<e-2<1,∴3πe-2>3π,∴3e-2π>3πe-2,故B错误;∵π>3,∴logπe<log3e,故C正确;由π>3,可得log3

e>logπe,则πlog3e>3logπe,故D正确.8.函数y=-x2+2|x|+1的单调递增区间为________,单调递减区间为________.答案(-∞,-1]和[0,1](-1,0)和(1,+∞)解析由于y=-x2

+2x+1,x≥0,-x2-2x+1,x<0,即y=-(x-1)2+2,x≥0,-(x+1)2+2,x<0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为(-1,0)和(1,+∞).9.如果函数f

(x)=ax2+2x-3在区间(-∞,4)上单调递增,则实数a的取值范围是______________.答案-14,0解析当a=0时,f(x)=2x-3在定义域R上是单调递增的,故在(-∞,4)上单调递增;当a≠0时,二次函数f(x)的对称轴

为x=-1a,因为f(x)在(-∞,4)上单调递增,所以a<0,且-1a≥4,解得-14≤a<0.综上,实数a的取值范围是-14,0.10.(2019·福州质检)如果函数f(x)=(2-a)x+1,x<1,ax,x≥1满足对任意x1≠x2,都有f(x1)-

f(x2)x1-x2>0成立,那么实数a的取值范围是________.答案32,2解析对任意x1≠x2,都有f(x1)-f(x2)x1-x2>0,所以y=f(x)在R上是增函数.所以2-a>0,a>1,(2-a)×1+1≤a,解得32≤a

<2.故实数a的取值范围是32,2.11.试判断函数f(x)=x3-1x在(0,+∞)上的单调性,并加以证明.证明方法一设0<x1<x2,f(x)=x3-1x=x2-1x,f(x1)-f(x2)=x21-x22-1x1-1x2

=(x1-x2)·x1+x2+1x1x2.∵x2>x1>0,∴x1-x2<0,x1+x2+1x1x2>0.∴f(x1)-f(x2)<0,即f(x1)<f(x2).故f(x)在(0,+∞)上单调递增.方

法二f′(x)=2x+1x2.当x>0时,f′(x)>0,故f(x)在(0,+∞)上为增函数.12.已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且x>0时,f(x)<0.(1)求证:f(x)在R上

是奇函数;(2)求证:f(x)在R上是减函数;(3)若f(1)=-23,求f(x)在区间[-3,3]上的最大值和最小值.(1)证明∵函数f(x)对于任意x,y∈R总有f(x)+f(y)=f(x+y),

令x=y=0得f(0)=0,令y=-x得f(-x)=-f(x),∴f(x)在R上是奇函数.(2)证明在R上任取x1>x2,则x1-x2>0,f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x

2),∵x>0时,f(x)<0,∴f(x1-x2)<0,∴f(x1)<f(x2),∴f(x)在R上是减函数.(3)解∵f(x)是R上的减函数,∴f(x)在[-3,3]上也是减函数,∴f(x)在[-3,

3]上的最大值和最小值分别为f(-3)和f(3),而f(3)=3f(1)=-2,f(-3)=-f(3)=2,∴f(x)在[-3,3]上的最大值为2,最小值为-2.13.若存在正数x使2x(x-a)<1成立,则实数a的取值范围是____

____.答案(-1,+∞)解析由题意可得,存在正数x使a>x-12x成立.令f(x)=x-12x,该函数在(0,+∞)上为增函数,可知f(x)的值域为(-1,+∞),故a>-1时,存在正数x使原不等式成立.14.设函数f(x

)=-x2+4x,x≤4,log2x,x>4.若函数y=f(x)在区间(a,a+1)上单调递增,则实数a的取值范围是__________________.答案(-∞,1]∪[4,+∞)解析作函数f(x)的图象如图所示,

由图象可知f(x)在(a,a+1)上单调递增,需满足a≥4或a+1≤2,即a≤1或a≥4.15.(2019·石家庄模拟)已知函数f(x)=2021x-2021-x+1,则不等式f(2x-1)+f(2x)>2的解集为____________.答案14,+∞

解析由题意知,f(-x)+f(x)=2,∴f(2x-1)+f(2x)>2可化为f(2x-1)>f(-2x),又由题意知函数f(x)在R上单调递增,∴2x-1>-2x,∴x>14,∴原不等式的解集为14,+∞.16.已知

函数f(x)=lgx+ax-2,其中a是大于0的常数.(1)求函数f(x)的定义域;(2)当a∈(1,4)时,求函数f(x)在[2,+∞)上的最小值;(3)若对任意x∈[2,+∞)恒有f(x)>0,试确定实数a的取值范围.解(1)由x+ax-2>0,得x2-2

x+ax>0.①当a>1时,x2-2x+a>0恒成立,定义域为(0,+∞);②当a=1时,定义域为{x|x>0且x≠1};③当0<a<1时,定义域为{x|0<x<1-1-a或x>1+1-a}.(2)设g(x)=x+ax-2,当a∈(1,4),x∈[2,+∞)时,g(x)=x+ax-2在[2,

+∞)上是增函数.∴f(x)=lgx+ax-2在[2,+∞)上是增函数,∴f(x)=lgx+ax-2在[2,+∞)上的最小值为f(2)=lga2.(3)对任意x∈[2,+∞)恒有f(x)>0,即x+ax-2>1对x∈[2,+∞)恒成立.∴a>3x-x2,x∈[

2,+∞).设h(x)=3x-x2,x∈[2,+∞),则h(x)=3x-x2=-x-322+94在[2,+∞)上是减函数,∴h(x)max=h(2)=2.∴a>2.即实数a的取值范围是(2,+∞).获得更多资源请扫码加入享学资源网微信公众号www.xiangxue

100.com

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?