2023-2024学年高二数学苏教版2019选择性必修第一册同步试题 1.1 直线的斜率与倾斜角(四大题型)(原卷版)

DOC
  • 阅读 6 次
  • 下载 0 次
  • 页数 11 页
  • 大小 1.662 MB
  • 2024-10-15 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档5.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2023-2024学年高二数学苏教版2019选择性必修第一册同步试题 1.1 直线的斜率与倾斜角(四大题型)(原卷版)
可在后台配置第一页与第二页中间广告代码
2023-2024学年高二数学苏教版2019选择性必修第一册同步试题 1.1 直线的斜率与倾斜角(四大题型)(原卷版)
可在后台配置第二页与第三页中间广告代码
2023-2024学年高二数学苏教版2019选择性必修第一册同步试题 1.1 直线的斜率与倾斜角(四大题型)(原卷版)
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的8 已有6人购买 付费阅读4.00 元
/ 11
  • 收藏
  • 违规举报
  • © 版权认领
下载文档5.00 元 加入VIP免费下载
文本内容

【文档说明】2023-2024学年高二数学苏教版2019选择性必修第一册同步试题 1.1 直线的斜率与倾斜角(四大题型)(原卷版).docx,共(11)页,1.662 MB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-565a76f486667a6805e402fa8c48b876.html

以下为本文档部分文字说明:

1.1直线的斜率与倾斜角课程标准学习目标在探索确定直线位置的几何要素、定义直线的倾斜角和斜率的概念、推导过两点的直线斜率的计算公式的过程中,体会坐标法思想,发展数学抽象、逻辑推理、直观想象、数学运算等素养.1、理解并掌握直线的斜率的概念,掌握过两点的直线的斜率公式.2、

理解并掌握直线的斜率.3、理解并掌握直线的斜率的求法.4、理解并掌握斜率公式的简单应用.知识点01直线的倾斜角平面直角坐标系中,对于一条与x轴相交的直线,如果把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为,则叫做直线的倾斜角.规定:当直线和x

轴平行或重合时,直线倾斜角为0,所以,倾斜角的范围是0180.知识点诠释:1、要清楚定义中含有的三个条件①直线向上方向;②x轴正向;③小于180的角.2、从运动变化观点来看,直线的倾斜角是由x轴按逆时

针方向旋转到与直线重合时所成的角.3、倾斜角的范围是0180.当0=时,直线与x轴平行或与x轴重合.4、直线的倾斜角描述了直线的倾斜程度,每一条直线都有唯一的倾斜角和它对应.5、已知直线的倾斜角不能确定直线的位置,但

是,直线上的一点和这条直线的倾斜角可以唯一确定直线的位置.【即学即练1】(2023·高二课时练习)对于下列命题:①若是直线l的倾斜角,则0180;②若直线倾斜角为,则它斜率tank=;

③任一直线都有倾斜角,但不一定有斜率;④任一直线都有斜率,但不一定有倾斜角.其中正确命题的个数为()A.1B.2C.3D.4知识点02直线的斜率1、定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率,常用k表示,即tank=.

知识点诠释:(1)当直线l与x轴平行或重合时,0=,tan00k==;(2)直线l与x轴垂直时,90=,k不存在.由此可知,一条直线l的倾斜角一定存在,但是斜率k不一定存在.2、直线的倾斜角与

斜率k之间的关系由斜率的定义可知,当在(0,90)范围内时,直线的斜率大于零;当在(90,180)范围内时,直线的斜率小于零;当0=时,直线的斜率为零;当90=时,直线的斜率不存在.直线的斜率与直线的倾斜角(90除外)为一一对应关系,且在)0,90

和(90,180)范围内分别与倾斜角的变化方向一致,即倾斜角越大则斜率越大,反之亦然.因此若需在)0,90或(90,180)范围内比较倾斜角的大小只需比较斜率的大小即可,反之亦然.【即学即练2】(2023·高二课时练习)若如图中的直线123,,lll的斜率为

123,,kkk,则()A.123kkkB.312kkkC.213kkkD.321kkk知识点03斜率公式已知点111(,)Pxy、222(,)Pxy,且12PP与x轴不垂直,过两点111(,)Pxy、

222(,)Pxy的直线的斜率公式2121yykxx−=−.知识点诠释:1、对于上面的斜率公式要注意下面五点:(1)当12xx=时,公式右边无意义,直线的斜率不存在,倾斜角90=,直线与x轴垂直;(2)k与1P、2P的顺序无关,即1y,2y和1x,2x在公式中的前后次序可以同时交

换,但分子与分母不能交换;(3)斜率k可以不通过倾斜角而直接由直线上两点的坐标求得;(4)当12yy=时,斜率0k=,直线的倾斜角0=,直线与x轴平行或重合;(5)求直线的倾斜角可以由直线上两点的坐标先

求斜率而得到.2、斜率公式的用途:由公式可解决下列类型的问题:(1)由1P、2P点的坐标求k的值;(2)已知k及1122,,,xyxy中的三个量可求第四个量;(3)证明三点共线.【即学即练3】(2023·高二课时练习)已知直线的斜率2k=,

且()A3,5,(),7Bx,()1,Cy−是这条直线上的三个点,求实数x和y的值.题型一:直线的倾斜角与斜率定义例1.(2023·高二课时练习)已知点()()2,13,2AB,,则直线AB的倾斜角为()A.30B.45C.60D.135例2.(2023·安徽蚌埠·

高二统考期末)已知直线:60lxay++=的倾斜角为60,则实数=a()A.3−B.33−C.33D.3例3.(2023·浙江·高二校联考期中)若直线l的斜率为3,则该直线的倾斜角为()A.30B.45C.60D.120变式1.(2023·安徽

六安·高二校考阶段练习)将直线MN绕原点旋转60得到直线MN,若直线MN的斜率为1,则直线MN的倾斜角是()A.105B.165C.15或75D.105或165【技巧总结】(1)倾斜角的概念中含

有三个条件:①直线向上的方向;②x轴的正方向;③小于平角的正角.(2)倾斜角是一个几何概念,它直观地描述且表现了直线对于x轴正方向的倾斜程度.(3)平面直角坐标系中每一条直线都有一个确定的倾斜角,且倾斜程度相同的直线

,其倾斜角相等;倾斜程度不同的直线,其倾斜角不相等.(4)确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角,二者缺一不可.题型二:斜率与倾斜角的变化关系例4.(2023·高二课时练习)设直线l的斜

率为k,且13k−,则直线l的倾斜角的取值范围为()A.π3π0,,π34B.π3π0,,π64C.π3π,64D.π3π0,,π34

U例5.(2023·上海黄浦·高二上海市敬业中学校考期中)直线()21210axay+−+=的倾斜角的取值范围是()A.π0,4B.ππ,42C.π3π,44D.π3π0,,π44

例6.(2023·湖南湘潭·高二校联考期末)若直线l的斜率为k,且23k=,则直线l的倾斜角为()A.30或150B.45或135C.60或120D.90或180变式2.(2023·

山东临沂·高二统考期末)设直线l的方程为()cos0Rxyb−+=,则l的倾斜角的取值范围是()A.π3π0,,π44B.ππ3π0,,424C.π3π,44D.ππ

π3,,422π4变式3.(2023·河南周口·高二校考阶段练习)已知直线l的斜率为2,则直线l的倾斜角()A.π0,6B.ππ,64C.ππ,43D.ππ,32

变式4.(2023·上海浦东新·高二上海师大附中校考阶段练习)已知直线l的倾斜角为,斜率为k,那么“1k”是“π4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件

【技巧总结】由斜率的定义可知,当在(0,90)范围内时,直线的斜率大于零;当在(90,180)范围内时,直线的斜率小于零;当0=时,直线的斜率为零;当90=时,直线的斜率不存在.直线的斜率与直线的倾斜角(90除外)为一一对应关系,且在

)0,90和(90,180)范围内分别与倾斜角的变化方向一致,即倾斜角越大则斜率越大,反之亦然.因此若需在)0,90或(90,180)范围内比较倾斜角的大小只需比较斜率的大小即可,反之亦然.题型三:已知两点求斜率

、已知斜率求参数例7.(2023·上海崇明·高二统考期末)已知直线l经过点()1,1A−,()2,3B,则它的斜率k=______.例8.(2023·上海普陀·高二上海市宜川中学校考期末)已知直线l经过点(3,3)(3,1)AB、.直线l的倾斜角是________

___.例9.(2023·江苏·高二假期作业)若经过点(1,1)Pa−和(2,3)Qa的直线的倾斜角是钝角,则实数a的取值范围是________.变式5.(2023·江苏·高二假期作业)过不重合的222(2,3),(3,2)AmmBmmm+−−−两点的直线l的倾斜角为45,则

m的取值为________.变式6.(2023·江苏·高二假期作业)过两点A(5,y),B(3,-1)的直线的倾斜角是135°,则y等于________.变式7.(2023·河北沧州·高二统考期中)已知两点()()22,,1,1MmmN+,若直线MN的斜率为

2m−,则m=______.变式8.(2023·高二课时练习)已知点A的坐标为()3,4,在坐标轴上有一点B,若4ABk=,则点B的坐标为________.变式9.(2023·北京·高二北京一七一中校考阶段练习)已知()4,8A,()2,4B,()3,Cy三点共线,则y=_____.变

式10.(2023·高二校考单元测试)设点(,3),(2,1),(1,4)AmmBmC−+−−,若直线AC的斜率等于直线BC的斜率的3倍,则实数m的值为___________.变式11.(2023·高二课时练习)已知三点()()()3,1,2,,8,11ABkC−共线,

则k的值为________.变式12.(2023·上海松江·高二上海市松江二中校考期中)已知点()0,8A−,()2,2B−,()4,Cm,若线段AB,AC,BC不能构成三角形,则m的值是________.【技巧总结】由于直线上任意两点的斜率都相等,因此A,B,C三点共线A

,B,C中任意两点的斜率相等.斜率是反映直线相对于x轴正方向的倾斜程度的,直线上任意两点所确定的方向不变,即在同一直线上任意不同的两点所确定的斜率相等.这正是利用斜率可证三点共线的原因.题型四:直线与线段相交关

系求斜率范围例10.(2023·江西抚州·高二统考期末)已知坐标平面内三点()()()1,1,1,1,2,31ABC−+,D为ABC的边AC上一动点,则直线BD斜率k的变化范围是()A.30,3B.(3,0,3−+C.3

,33D.(),03,−+例11.(2023·安徽滁州·高二校考期中)已知点()1,2A−,()2,2B−,()0,3C,若点(),Mab是线段AB上的一点()0a,则直线CM的斜率的取值范围是()A.5,12−B.(5,00,12−C.51

,2−D.)5,1,2−−+例12.(2023·江苏连云港·高二校考阶段练习)已知点()()2,3,3,2AB−,若直线20axy++=与线段AB没有交点,则a的取值范围是(

)A.54,,23−−+B.45,32−C.54,23−D.45,,32−−+变式13.(2023·全国·高二校联考阶段练习)已知点()1,2A−,(

)5,8B,若过点()1,0C的直线与线段AB相交,则该直线的斜率的取值范围是()A.1,2−B.(),12,−−+C.(),21,−−+D.()(),12,−−+变式14.(2023·江苏常州·高二常州市第三中学校考期末)已知点()()2,3,3,2A

B−−−.若直线:10lmxym−−+=与线段AB相交,则实数m的取值范围是()A.(3,4,4+−−B.)3,4,4−−+C.34,4−D.3,44−变式15.(2023·江苏泰州

·高二统考期中)经过点(0,1)P−作直线l,若直线l与连接(1,2)A−,(2,1)B两点的线段总有公共点,则直线l的倾斜角的取值范围是()A.30,,44B.3,44C.3,,4224

D.30,,44【技巧总结】直线的倾斜角是从“形”的角度刻画直线的倾斜程度,而直线的斜率及斜率公式则从“数”的角度刻画直线的倾斜程度,把二者紧密地结合在一起就是数形结合.利用它可以较为简便地解决一些综合问题,如过定点的直线与已知线段是否

有公共点的问题,可先作出草图,再结合图形考虑.一般地,若已知11)(,Axy,22)(,Bxy,00)(,Pxy,过P点作垂直于x轴的直线l,过P点的任一直线l的斜率为k,则当l与线段AB不相交时,k夹在PAk与PB

k之间;当l与线段AB相交时,k在PAk与PBk的两边.一、单选题1.(2023·黑龙江大庆·高二大庆实验中学校考期末)设直线l的方程为66cos130xy−+=,则直线l的倾斜角的范围是()A.[0

,]B.ππ,42C.π3π,44D.πππ3,,422π42.(2023·天津西青·高二天津市西青区杨柳青第一中学校考阶段练习)直线5π2cos606xy++=的倾斜角为()A.π6B.π3C.2π

3D.5π63.(2023·安徽·高二校联考开学考试)已知点(),7Aa,()1,Bb−在直线l:31yx=−+上,则直线10axby++=的斜率为()A.12B.12−C.2D.2−4.(2023·上海浦东新·高二校考期末)在“立体几何”知识中:(1)两直线所成角的取值范围是π0,2

;(2)直线与平面所成角的取值范围是π0,2;(3)二面角的平面角取值范围是0π,.在“解析几何”知识中;(4)直线的倾斜角取值范围是)0,π;(5)两直线的夹角取值范围是(0,π;在“向量”知识中:(6)两向量的夹角的取值范围是0,

π;以概念叙述正确的是()A.(2)(1)(4)(5)B.(2)(3)(4)(6)C.(3)(4)(5)D.(2)(3)(4)5.(2023·江苏泰州·高二靖江高级中学校考阶段练习)已知直线l经过()1,4A−,()1,2B两点,

则直线l的倾斜角为()A.π6B.π4C.2π3D.3π46.(2023·广东深圳·高二深圳中学校考期中)已知点()2,1A−−,()3,0B,若点(),Mxy在线段AB上,则21yx−+的取值范围()A.)1,3,2−−+B.1,32−C.()

,13,−−+D.1,3−7.(2023·山东烟台·高二山东省烟台第一中学校考阶段练习)经过点(0,1)P−作直线l,若直线l与连接(1,2)A−,(2,1)B两点的线段总有公共点,则直线l的倾斜

角的取值范围是()A.,44−B.0,4C.3,44D.30,,448.(2023·福建福州·高二福建省福州延安中学校考阶段练习)1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗

小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,OO1,OO2,OO3,OO4分别是大星中心点与四颗小星中心点的连接线

,α≈16°,则第三颗小星的一条边AB所在直线的倾斜角约为()A.0°B.1°C.2°D.3°二、多选题9.(2023·江苏徐州·高二校联考阶段练习)下列说法正确的是()A.有的直线斜率不存在B.若直线l的倾斜角为,且90,则它的斜率tank=C.若直线l的斜率为1

,则它的倾斜角为34D.截距可以为负值10.(2023·广西柳州·高二校考期末)下列说法正确的是()A.直线的倾斜角取值范围是0πB.若直线的斜率为tan,则该直线的倾斜角为C.平面直角坐标

系中的任意一条直线都有倾斜角,但不一定有斜率D.直线的倾斜角越大,其斜率就越大11.(2023·广西桂林·高二校考期中)设点(2,3),(3,2)AB−,若直线20axy++=与线段AB没有交点,则a的取值可能是()A.1−B.2−C.1D.5212.(2023·湖北武汉·高二

校考阶段练习)如图,直线1l,2l,3l的斜率分别为1k,2k,3k,则()A.12kkB.32kkC.31kkD.13kk三、填空题13.(2023·新疆塔城·高二统考开学考试)若过(4,),(2,3)AyB−两点的直线的倾斜角是45,则y=______________

__.14.(2023·全国·高二专题练习)若实数x、y满足3yx=−+,11x−,则代数式32yx++的取值范围为______15.(2023·北京·高二北京一七一中校考阶段练习)已知两点A(1,﹣2),B(2,1),直

线l过点P(0,﹣1)与线段AB有交点,则直线l斜率取值范围为___________.16.(2023·高二课时练习)当m=______时,直线360xy−−=与直线30mxy−+=的夹角为60°.四、解答题17.(2023·河南

·高二校联考阶段练习)判断下列三点是否在同一条直线上:(1)(3,1),(2,4),(3,0)ABC−−;(2)(5,1),(1,2),(5,4)DEF−−−.18.(2023·河南·高二校联考阶段练习)已知()3,1A,()2

,4B,(),2Cm三点.(1)若直线BC的倾斜角为135°,求m的值.(2)是否存在m,使得,,ABC三点共线?若存在,求m的值;若不存在,说明理由.19.(2023·高二单元测试)已知点(1,1)(2,4)

、−AB.(1)求直线AB的倾斜角(2)过点(1,0)P的直线m与过(1,1)(2,4)、−AB两点的线段有公共点,求直线m斜率的取值范围.20.(2023·高二课时练习)已知坐标平面内三点()1,1A−,()1,1B,()2

,31C+.(1)求直线AB,BC,AC的斜率和倾斜角;(2)若D为ABC的AB边上一动点,求直线CD的倾斜角的取值范围.

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?