【文档说明】湖北省武汉外国语学校2023-2024学年高二下学期期末考试数学试卷答案.docx,共(4)页,416.688 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-1c4904b73bf53aaca0550cf2a4f44acc.html
以下为本文档部分文字说明:
2024武汉外校高二下数学期末参考答案一、选择题题号1234567891011答案ABBDCDCDBCACDACD二、填空题12.0=−+yx13.33314.649()nnnC2224三、解答题15.
(13分)已知ABC的内角CBA,,的对边分别为cba,,,满足0cos2=+−acBa(1)证明:AB2=;(2)若24,31sin==bA,求ABC的面积.(1)证明:由0cos2=+−ac
Ba可得0sinsincossin2=+−ACBA即0sin)sincossin2=++−ABABA(,化简得A)-sin(Bsin=A因为BA,为ABC的内角,所以有A-B=A,得AB2=(2)由(1)知道A为锐角,由,3
1sin=A得,322cos=A所以924cossin2sin==AAB97cos=B由正弦定理AaBbsinsin=,得3sinsin==ABba依题0cos2=+−acBa,带入相应得值可得323=c,得9246s
in21==AbcSABC16.(15分)在平面直角坐标系xOy中,已知椭圆E:()222210xyabab+=左焦点为F1,离心率为22,且过点21,2A,直线AF1与椭圆C相交于另一点B.(1)求E的方程;(2)设点M在
椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=2S1,求点M的坐标.(1)由题可得222222211ceaab==+=,解的222,1ab==,即22:12xEy+=(2)由(
1)得1(1,0)F−,则直线()2:14AByx=+,直线AB与y轴交点为2(0,)4N由题2MABOABSS=,转化为在Y轴上取点P,使得P到直线AB的距离是O到直线AB的距离的两倍,可得1220,432
,0,4PP−满足题意,过12PP,作与AB平行的直线12ll,,两直线与椭圆E的交点即为满足题意的点()12:14lyx=−带入椭圆22:12xEy+=解得12272
1,,,2510MM−−()12:34lyx=+带入椭圆22:12xEy+=解得3421721,,,2510MM−−综上可得,M的坐标为2721,,,2510−−21721,,,2510−
−,17.(15分)如图,在三棱柱111CBAABC−中,ABC是正三角形,四边形CCAA11为棱形,31=ACA,ABBA21=(1)证明:BACA111⊥(2)求二面角11C
AAB−−的正弦值.(1)取AC的中点为O,连接OABO1,,由题知ACAABC1,是正三角形,ACBOACOA⊥⊥,1又3,111==ACAACAA且,为正三角形ACA1BOAACOBOO
AACOA111,,平面又⊥=⊥又1111111111,,//CABABOABABOACAACCA⊥⊥平面平面(2)方法1:几何法不妨设aAB=,则有aBAABBAaAAACAB2,2111=====,又AABAABAABAABA
112212190,⊥=+=,AACMACACMMAA111,⊥为正三角形,,连接的中点取AAMNABMNMNNBA11,//,,⊥则连接的中点取的平面角即为二面角可得11CAABCMN−−90,23,211===BCAaCMaMN
CMN同理中,aCNaBAaCABC22,2,11====由余弦定理,3331212322141432cos222222==−+=−+=aaaaaNMCMCNNMCMCMN36sin=CMN
C方法2:建系法取O为AC的中点,过O作平面ABC的垂线,以该垂线为z轴,建立如图所示的空间直角坐标系,不妨设AB=2a,依题aBCACAB2===,aBAaCAaAA22,2,2111===则()()()()zyxAaCaBaA,,,0,,0,0
,0,3,0,,01设−()==−==++−=+−+=+++azyaxazyaxazayxazayx38031834)(4)(222222222222()()0,2,0,0,,3,38,,31,38,0,
3111aACaaABaaaAAaaA==−=−设平面1BAA法向量为()1111,,zyxn=,则()2,3,1321030383100111111111111−=−=
===+=++−==nzyxayaxazayaxAAnABn同理,平面ACA1的法向量()2222,,zyxn======++−420102038312222222zyxayazayax=42,0,1
2n36sin,3132323cos===18.(1)设函数()()ln12axfxxx=+−+,当0x时,()0fx恒成立,求a的取值范围(2)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽到的20个号码
互不相同的概率为p,证明:1929110ep.解:(1)()()()()0,21122)(22+++−+=xxxxaxxf0)0(=f,若,0a0)(xf,函数()()ln12axfxxx=+−+在0x
时,单调递增,()0fx恒成立;满足题意若,0a()()()()224242=012xaxafxxxx+−+−++,方程()24242=0xaxa+−+−的判别式为()=42aa−①20a时,()0fx,函数()()ln12axfxxx=+−+在0
x时,单调递增,()0fx恒成立,满足题意②2a时,方程()24242=0xaxa+−+−在0x上的解为()=22xaaa−+−,()022xaaa−+−时,()242420xaxa+−+−,()0f
x,函数()()ln12axfxxx=+−+在0x时,单调递减,不满足()0fx恒成立综上所述,a的取值范围2a(2)由已知条件得,抽取的20个号码互不相同的概率为20100202019A100999881999881=1
00100100p==,因为()()222998190990990990=+−=−,同理2988290,2978390,,2819990,所以1999988190,所以1919199199988190910010010
=,再证:1929110e,即证:919ln210−,即92ln1019−,92ln01019+,由(1)得,当0x时,()2ln102xxx+−+,取110x=−,则1
21910ln011010210f−−=−−+,即92ln01019+.综上,1929110ep.19.已知有穷正项数列()nanm,若将数列每项依次围
成一圈,满足每一项等于相邻两项的乘积,则称该数列可围成一个“T-Circle”.例如:数列111,1,1,2,1,,,1,222都可围成“T-Circle”.(1)设1aa=,当5m=时,是否存在a使该数列可围成“T-Circle”,并说明理由.(2)若na的各项全不相等,
且可围成“T-Circle”,写出m的取值(不必证明),并写出一个满足条件的数列.(3)若na的各项不全..相等..,且可围成“T-Circle”,求m的取值集合.解:(1)由定义可得22211iiia
aa−+=,而na为正项数列,故11iiiaaa−+=,故213324435514152,,,,aaaaaaaaaaaaaaa=====,由最后两式可得241aa=,故31a=,故12aaa==且45aa
=,结合541aaa=可得11a=即1a=,故21a=,故3451aaa===.故存在1a=,使得数列na可围成“T-Circle”,此时数列na为:1,1,1,1,1.(2)6m=,满足条件的一个数列为3112232233,
,,,,(3)(i)若na的各项不全相等,且可围成“T-Circle”.结合na为正项数列可得111121(1),,nmmnnmaaanmaaaaaa−+−===,诸式相乘后可得121maaa=,又上述关
系式即为11(11)nnnaaanm−+=+(若下标大于m,则取下标除以m的余数).故21(11)nnnaaanm++=+,故211(11)nnanma−+=+(若下标大于m,则取下标除以m的余数).所以
15(11)nnaanm−+=+(若下标大于m,则取下标除以m的余数).设6,05mprr=+,若1r=,则11mmaaa−=即为111maaa−=,故11ma−=,从而61a=,31a=,而12maaa=,故112aaa=,
故21a=,故11a=,从而451aa==,此时na均为1,与题设矛盾.若2r=,则11mmaaa−=即为22111maaaa−==,而2122maaaa==,121aa==,故34561aaaa====,此时na均为1,与题设矛盾.若3r=,则11mmaaa−=即为312aaa=,而
213aaa=,所以11a=,故41a=,从而32aa=,而1223maaaaa==,故321aa==,故561aa==,此时na均为1,与题设矛盾.若4r=,则11mmaaa−=即为413aaa=,而324aaa=,所以121aa=,
而1224maaaaa==,故31aa=,故24111aaa==,故11a=,故231aa==,故41a=,故561aa==,此时na均为1,与题设矛盾.若=5r,则511141111mmaaaaaaaa−=====,故122maaaa==,故2311aaa==,
故45331aaaa===,故61a=,故3241aaa==,故11a=,此时na均为1,与题设矛盾.综上,*6,Nmkk=