【文档说明】2021高中数学选择性人教A版(2019)必修第二册课时作业:4.3.2 习题课 数列求和 .docx,共(9)页,81.263 KB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-0f5e5589e5a3920bc6d9166dd63a0074.html
以下为本文档部分文字说明:
课时作业(十一)数列求和[练基础]1.在数列{an}中,已知Sn=1-5+9-13+17-21+…+(-1)n-1(4n-3),则S15+S22-S31的值()A.13B.-76C.46D.762.已知等比数列{an}的前n项和为
Sn=2n-1,则a21+a22+a23+a24+…+a2n=()A.(2n-1)2B.13(2n-1)C.4n-1D.13(4n-1)3.设数列1,(1+2),…,(1+2+22+…+2n-1),…的前n项和为Sn,则Sn=()A.2nB.2n-nC.2n+
1-nD.2n+1-n-24.已知函数f(n)=n2,n为奇数,-n2,n为偶数,且an=f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0B.100C.-100D.102005.已知数列{an}中,an=4×(-1)n
-1-n(n∈N*),则数列{an}的前2n项和S2n=________.6.设Sn为数列{an}的前n项和,已知a1=2,对任意n∈N*,都有2Sn=(n+1)an.(1)求数列{an}的通项公式;(2)
若数列4an(an+2)的前n项和为Tn,求证:12≤Tn<1.[提能力]7.(多选题)已知数列{an}的前n项和为Sn,点(n,Sn+3)(n∈N*)在函数y=3×2x的图象上,等比数列{bn}满足bn+
bn+1=an(n∈N*),其前n项和为Tn,则下列结论错误的是()A.Sn=2TnB.Tn=2bn+1C.Tn>anD.Tn<bn+18.在等差数列{an}中,a2=8,S6=66,bn=2(n+1)an,Tn=b1+b2+…+bn,则Tn=________.9.在①a3=5,a
2+a5=6b2;②b2=2,a3+a4=3b3;③S3=9,a4+a5=8b2,这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{an}的公差为d(d>1),前n项和为Sn,等比数列{bn}的公比为q,且a1=b1,d
=q,________.(1)求数列{an},{bn}的通项公式.(2)记cn=anbn,求数列{cn}的前n项和Tn.[战疑难]10.设数列{an}的前n项和为Sn,称Tn=S1+S2+…+Snn为数列a1,a2,a3,…,an的“理想数”,已知数列a1,a2,a3,a4,a5
的理想数为2020,则数列2,a1,a2,…,a5的“理想数”为()A.1685B.2020C.50503D.50563课时作业(十一)数列求和1.解析:∵S15=(-4)×7+(-1)14(4×15-3)=29.S22=(-4)×11=-44.S31=(-4)×1
5+(-1)30(4×31-3)=61.∴S15+S22-S31=29-44-61=-76.故选B.答案:B2.解析:由an=Sn-Sn-1(n≥2)可以求出an=2n-1.由等比数列的性质知数列{a2n}是等比数列,
此数列的首项是1,公比是22,则S′n=1×[1-(22)n]1-22=13(4n-1).答案:D3.解析:因为an=1+2+22+…+2n-1=1-2n1-2=2n-1,所以Sn=(2+22+23+…+2n)-n=2(1-2n
)1-2-n=2n+1-n-2.故选D.答案:D4.解析:由题意得a1+a2+…+a100=(12-22)+(-22+32)+(32-42)+(-42+52)+…+(992-1002)+(-1002+1012)=-(1+
2)+(2+3)-…-(99+100)+(101+100)=100.故选B.答案:B5.解析:S2n=a1+a2+…+a2n=[4(-1)0-1]+[4(-1)1-2]+[4(-1)2-3]+…+[4(-1)2n-1-2n]=4[(-1)0+(-1)1+(-1)2+…+(-1)
2n-1]-(1+2+3+…+2n)=-2n(2n+1)2=-n(2n+1).答案:-n(2n+1)6.解析:因为2Sn=(n+1)an,当n≥2时,2Sn-1=nan-1两式相减得:2an=(n+1)an
-nan-1即(n-1)an=nan-1,所以当n≥2时,ann=an-1n-1.所以ann=a11=2,即an=2n.(2)证明:因为an=2n,bn=4an(an+2),n∈N*,所以bn=42n(2n+2)=1n(n+1)=1n-1n+1.所以Tn=b1+b2+…+bn=1-
12+12-13+…+1n-1n-1=1-1n+1=nn+1,因为1n+1>0,所以1-1n+1<1.又因为f(n)=1n+1在N*上是单调递减函数,所以1-1n+1在N*上是单调递增函数.所以当n=1时,Tn取最小值12,所以12≤Tn<1.7
.解析:根据题意,对于数列{an}点(n,Sn+3)(n∈N*)在函数y=3×2x的图象上,则有Sn+3=3×2n,即Sn=3×2n-3①当n≥2时,由①得Sn-1=3×2n-1-3②①-②得an=(3×2n-3)-(3×2n-1-3)=3×2n-1③当n=1时,a1=S1=3×2-3=
3,验证可得当n=1时,a1=3符合③式,则an=3×2n-1,设等比数列{bn}的公比为q,又等比数列{bn}满足bn+bn+1=an(n∈N*),故当n=1时,有b1+b2=b1(1+q)=3④当n=2时,有b2+b3=b2(1+q)=b1q(1+q)=6⑤
联立④⑤,解得b1=1,q=2,则bn=2n-1,则有Tn=1(1-2n)1-2=2n-1,据此分析选项:对于A,Sn=3×2n-3=3(2n-1),Tn=2n-1,则有Sn=3Tn,故A错误;对于B,Tn=2n-1,bn=2n-1,Tn=2bn-1,故B错误;对于C,当
n=1,T1=2-1=1,a1=3×20=3,Tn>an不成立,故C错误;对于D,Tn=2n-1,bn+1=2n,则有Tn<bn+1,故D正确,综上,选项A,B,C错误,故选ABC.答案:ABC8.解析:设等差数列{an}的公差为d,由题意得a1+d=86a1+15d
=66,解得a1=6d=2,则an=2n+4,因此bn=2(n+1)(2n+4)=1n+1-1n+2,所以Tn=12-13+13-14+…+1n+1-1n+2=12-1n+2=n2n+4.答案:n2n+49.解析:方案一:选条件①(1)
∵a3=5,a2+a5=6b2,a1=b1,d=q,d>1∴a1+2d=52a1+5d=6a1d解得a1=1d=2或a1=256d=512(舍去)∴b1=1q=2∴an=a1+(n-1)d=2n-1bn=b1qn-1=2n-1(2
)∵cn=anbn∴cn=2n-12n-1=(2n-1)×12n-1∴Tn=1+3×12+5×122+…+(2n-3)×12n-2+(2n-1)×12n-1∴12Tn=12+3×1
22+5×123+…+(2n-3)×12n-1+(2n-1)×12n∴12Tn=1+212+122+…+12n-1-(2n-1)×12n=1+2×12
1-12n-11-12-(2n-1)×12n=3-(2n+3)×12n∴Tn=6-(2n+3)×12n-1方案二:选条件②(1)∵b2=2,a3+a4=3b3,a1=b1,d=q,d>1∴a1d=
22a1+5d=3a1d2∴a1d=22a1+5d=6d解得a1=1d=2或a1=-1d=-2(舍去)∴b1=1q=2∴an=a1+(n-1)d=2n-1bn=b1qn-1=2n-1
(2)∵cn=anbn∴cn=2n-12n-1=(2n-1)×12n-1∴Tn=1+3×12+5×122+…+(2n-3)×12n-2+(2n-1)×12n-1∴12Tn=12+3×12
2+5×123+…+(2n-3)×12n-1+(2n-1)×12n∴12Tn=1+212+122+…+12n-1-(2n-1)×12n=1+2×12
1-12n-11-12-(2n-1)×12n=3-(2n+3)×12n∴Tn=6-(2n+3)×12n-1方案三:选条件③∵S3=9,a4+a5=8b2,a1=b1,d=q,d>1∴a1+d=32a1+7
d=8a1d解得a1=1d=2或a1=218d=38(舍去)即b1=1q=2∴an=a1+(n-1)d=2n-1bn=b1qn-1=2n-1(2)∵cn=anbn∴cn=2n-12n-1=(2n-1)×12n-1∴Tn
=1+3×12+5×122+…+(2n-3)×12n-2+(2n-1)×12n-1∴12Tn=12+3×122+5×123+…+(2n-3)×12n-
1+(2n-1)×12n∴12Tn=1+212+122+…+12n-1-(2n-1)×12n=1+2×121-12n-11-12-(2n-1)×12n=3-(2n+3)×12n∴T
n=6-(2n+3)×12n-110.解析:因为数列a1,a2,…,a5的“理想数”为2020,所以S1+S2+S3+S4+S55=2020,即S1+S2+S3+S4+S5=5×2020,所以数列2,a1,a2,…,a5的“理想数”为2+(2+S1)+(2+S2)+…+(
2+S5)6=6×2+5×20206=50563.故选D.答案:D获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com