【文档说明】数学答案.docx,共(5)页,182.801 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-918a708cb50c22185303986a6c497c5e.html
以下为本文档部分文字说明:
2024—2025学年度上学期高三学年期中考试数学答案一、单选题1.D2.D3.A4.A5.D6.B7.D8.C二、多选题9.AC10.ABD11.ACD三、填空题12.213.4014.1四、解答题15.(1)22()baacc−=
−即222bacac=+−∵2222cosbacacB=+−∴1cos2B=,又(0,)B∴3B=(2)由3sinsin32acAC==可得,2sinaA=,2sincC=2sin2sin3labcAC=++=++∵2+3AC=∴23CAp=-∴2
2sin2sin()33labcAA=++=+−+3sin3cos3AA=++23sin()36A=++∵203A∴l的最大值为3316.(1)321212222nnnaaaa−++++=当2n时,312122)2
222(1nnaaana−−++++=−两式相减,得122nna−=,即2nna=.又当1n=时,12a=符合题意,所以2nna=.(2)由(1)得2nna=,所以11222111nnnnnnbbdnnn++−−===+++,则112nnnd+=,所以()1
23111123412222nnTn=+++++()12341111112341222222nnnTnn+=++++++两式相减得:()()11211111
1111113342211112222222212nnnnnnnTnn++++−+=+++−+=+−+=−−,所以332nnnT+=−.17.(1)2231()2sincos()2sin2sin(
cossin)2sin226fxxxxxxxx=+−=−−23333sin23sinsin2(1cos2)3sin(2)22232xxxxx=−=−−=+−,由22,32xkk+=+Z,得,12xkk=+Z,所以()fx的对称轴为ππ
()122kxk=+Z.由222,232kxkk−+++Z,0,x,所以单调递增区间为701212,,,(2)由(1)知,33()3sin(2)322fAA=+−=−,则πsin(2)03A+=,
由02A,得ππ4π2333A+,则π23A+=,解得π3A=,因为ABCV中,3cos3B=,则B为锐角,所以2236sin1cos133BB=−=−=,因为π3A=,πABC++=,所以2π3CB
=−,所以2π2π2π331616sinsinsincoscossin333232326CBBB=−=−=+=+,设BAD=,则π3CAD=−,在ABD△和ACD中,由正弦定理得3
sinsin6BDADADB==,6πsin36sin3CDADADC==+−,因为2CDBD=,上面两个等式相除可得()π6sin36sin3−=+,得()316cossin36sin22−=+,即()2cos26si
n=+,所以2tantan3226BAD===−+.18.(1)证明:2123123)1231(231212221−+=−++=−=++++nanaabnnnnnnnnbaanna31)23(312131212)6(
31222=−=−=−+−=,又212313123121=−+=−=aab,所以,数列}{nb为以21为首项,31为公比的等比数列.(2)由(1)可知13121−=nnb,又232−=nnab,23312112+=−nna.设nnaa
aP242++=,则nnPnnn233143432331131121+−=+−−=,设1231−++=nnaaaQ,1231122−+=−naann,2312)121(31nQnnQPnnn+=−++=,233nPQnn−=
,故21223631334nnnPQPSnnnnn−+−=−=+=−.(3)nnnnnnnc321132113331311311−−−=−−=−−=−,nnnnnnnT311)311()313131(22+−=−−=+++−,所以欲证1133l
n−−−nnnnT,只需证)311ln(313ln133ln31nnnnnn−−=−−=−,即证nn31)311ln(−−.设)0,1(),1ln()(−+−=xxxxf,01)(+=xxxf,故)(xf在)0,1(−上单调递减,0)0()(=fxf
,)0,1(−x时,)1ln(xx+.)0,31[31−−n,nn31)311ln(−−得证.19.1)𝑎=𝑒,𝑓(𝑥)=𝑒𝑥−1−sin𝑥,𝑓(0)=𝑒−1,𝑓′(𝑥
)=𝑒𝑥−1−cos𝑥,𝑓′(0)=𝑒−1−1∴𝑦−𝑒−1=(𝑒−1−1)𝑥2)𝑓(𝑥)3−𝑓(𝑥)2+ln(1+𝑓(𝑥))≥0.令𝑓(𝑥)=𝑡,𝑡3−𝑡2+ln(1+𝑡)≥0(1)t−令𝑔(𝑡
)=𝑡3−𝑡2+ln(1+𝑡),𝑔′(𝑡)=3𝑡2−2𝑡+1𝑡+1=3𝑡3+𝑡2−2𝑡+1𝑡+1,当𝑡≥0,𝑔′(𝑡)≥0∴𝑔(𝑡)在(0,+∞)单调递增,当()32322(0,1),ln1(1)0ttttt
ttttt+++++=++∴𝑔(𝑡)≥0解集为𝑡≥0∴𝑒𝑥−ln𝑎−sin𝑥≥0(𝑥>0),𝑒𝑥𝑎≥sin𝑥,1𝑎≥sin𝑥𝑒𝑥=ℎ(𝑥).ℎ′(𝑥)=cos𝑥−sin𝑥𝑒𝑥=√2sin(𝑥+3𝜋4)𝑒𝑥,
∴𝑓(𝑥)在(0,𝜋4)单调递增,(𝜋4,5𝜋4)单调递减,当𝑥>5𝜋4时,ℎ(𝑥)<1𝑒5𝜋4∴ℎ(𝜋4)=√22𝑒𝜋4∴1𝑎≥√22𝑒𝜋4,0<𝑎≤√2𝑒𝜋43)ℎ(𝑥)=sin𝑥𝑒𝑥∴sin𝑥𝑒𝑥
=1𝑎有两个根𝑥1,𝑥2。由2)知,当𝑥∈(0,𝜋)ℎ(𝑥)在(0,𝜋4)单调递增,(𝜋4,𝜋)单调递减∴0<𝑥1<𝜋4<𝑥2<𝜋,欲证𝑥1+𝑥2<𝜋,即证𝑥2<𝜋−𝑥1∵
{𝑥2>𝜋4𝜋−𝑥1>𝜋4∴即证ℎ(𝑥2)>ℎ(𝜋−𝑥1),即证ℎ(𝑥1)>ℎ(𝜋−𝑥1),即证sin𝑥1𝑒𝑥1>sin(𝜋−𝑥1)𝑒𝜋−𝑥1,即证𝑒𝜋−𝑥1>𝑒𝑥1,即证𝑥1<𝜋2,显然成立.欲证𝑥1+𝑥2>𝜋2,即证𝑥2>�
�2−𝑥1,𝜋2−𝑥1∈(𝜋4,𝜋),即证𝑓(𝑥2)<𝑓(𝜋2−𝑥1),即证𝑓(𝑥1)<𝑓(𝜋2−𝑥1),即证sin𝑥1𝑒𝑥1<sin(𝜋2−𝑥1)𝑒𝜋2−𝑥1,即证ta
n𝑥1<𝑒2𝑥1−𝜋2。令𝑡(𝑥)=tanx𝑒2𝑥1−𝜋2,𝑡′(𝑥)=1cos2𝑥𝑒2𝑥1−𝜋2−2tan𝑥1⋅𝑒2𝑥1−𝜋2(𝑒2𝑥1−𝜋2)2,令𝑘(𝑥)=1cos2𝑥−2ta
n𝑥=1cos2𝑥−2sin𝑥cos𝑥=1−sin2𝑥cos2𝑥>0∴𝑡′(𝑥)>0,𝑡(𝑥)在(0,𝜋4)单调递增∴𝑡(𝑥)<𝑡(𝜋4)=1∴得证