【文档说明】2023-2024学年高二数学苏教版2019选择性必修第一册单元测试 第1章 直线与方程答案单元测试.pdf,共(4)页,105.248 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-815f48c47d0c606cd01e28462237bd49.html
以下为本文档部分文字说明:
第�章�直线与方程�������������������������������������������槡����槡������������������������槡�������������������������由题设知�该直线的斜率存在�
故可采用点斜式�设倾斜角为��则�����槡������������从而������槡������则�����������故所求直线方程为�����������即��������或������������由题设知截距不为��设直线方程为�����������又因为直线过点�����
��所以������������解得����或����故所求直线方程为���������或����������������当直线过原点时�该直线在�轴和�轴上的截距为零�所以����方程即为�������当直线不经过原点时�截距存在且均不为��所以�����������即������所以����
方程即为��������综上�直线�的方程为������或�����������由��������������得���或�����������因为������所以������������又��过点������所以�������由���解得�����
������或������������当�������时�不合题意�舍去�所以������������因为������所以������������由题意���������直线��与两坐标轴的交点坐标分别为�������
�������则�����������得������由���得�����������由题意���������������所以���为����������联立�������得����������������������所以�������设�����������的中点�为�����
���������代入���������得�����������所以�������������������������解得���������得�������所以直线��的方程为������������即����������
������设点�关于直线�的对称点为����������则线段���的中点�在直线�上�且������所以������������������������������������解得����������������即��点的坐标为����������
��由��������������������得�与��的交点�������在��上任取一点��������设�关于�的对称点��为��������则���������������������������������解得��
���������������即��为�����������所以��的斜率为�������所以��的方程为���������即�����������������������上一点�������则�关于点������的对称点��的坐标为������且��在
�关于������对称的直线上�又所求直线与�平行�所以设所求直线为���������������又过点��������所以�����所以所求直线方程为������������解法��求出�与坐标轴的交点坐标�将面积表示成�的函数�令����得�����������令����得��������
����所以三角形的面积����������������������������������������令����������则������������������������������������������当������即���时�直线�与两坐标轴围成的三角形
面积的最小值为���解法��求出动直线过的定点�简化直线�的方程形式�直线�的方程可化为�������������������由���������������������解得��������所以当�取不同的值时�动直线�过定点����������所以直线�的方程可设为���
����������其中��������������������令����得����������令����得�����������所以三角形面积���������������������������������������������������
当且仅当�������即����时取等号�故直线�与两坐标轴围成的三角形面积的最小值为���解法��求出动直线过的定点�利用几何知识和基本不等式�求面积的最小值�直线�的方程可化为�������������������由����������������
�����解得���������所以当�取不同值时�动直线�过定点�����������如图所示�设直线�分别交�轴��轴于点����作����轴于点������轴于点��易知����������所以������������������即������
�������所以����������������������������������������������������������槡�����当且仅当���������时取等号�故直线�与两坐标轴围成的三角形面积的最小值为����第��题��