【文档说明】2023-2024学年高二数学苏教版2019选择性必修第一册单元测试 第4章 数列单元测试 PDF版无答案.pdf,共(4)页,114.227 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-6a88fd18b55d600e39b7040d3d4b4f12.html
以下为本文档部分文字说明:
第�章�数��列一�选择题�本大题共��小题�每小题�分�共计��分���已知等差数列����中�������������则���������������������������若����是等比数列�其公
比是��且���������成等差数列�则�等于��������或����或������或�����或����记��为等差数列����的前�项和�若���������������则����������������������������设����是等比数列�且
����������������������则��������������������������������已知数列����满足������������且����������则��等于������������槡�����槡�����
�槡�����九章算术��竹九节�问题�现有一根�节的竹子�自上而下各节的容积成等差数列�上面�节的容积共�升�下面�节的容积共�升�则第�节的容积为��������升������升������升������升��已知等差数列����的前�项和为���若������������则等差数列
����公差�为��������������������已知数列����中�����������������������则����的值是���������������������������������已知数列����满足��������������其中��为数列����的前�项和�则���
�的通项公式��等于������������������������������公元前�世纪�古希腊哲学家芝诺发表了著名的阿基里斯悖论�他提出让乌龟在阿基里斯前面����米处开始�和阿基里斯赛跑�并且假定阿基里斯的速
度是乌龟的��倍�当比赛开始后�若阿基里斯跑了����米�此时乌龟便领先他���米�当阿基里斯跑完下一个���米时�乌龟仍然领先他��米�当阿基里斯跑完下一个��米时�乌龟仍然领先他�米���所以�阿基里斯永远追不上乌龟�根据这样的规律�若阿基里斯和乌龟的距离恰好为����米时�
乌龟爬行的总距离为����������������������������������������������已知等差数列����的公差����且��������成等比数列�则�����������������等于������������������������
���������多选�在�增删算法统宗�中有这样一则故事��三百七十八里关�初行健步不为难�次日脚痛减一半�如此六日过其关��则下列说法正确的是�������此人第二天走了九十六里路��此人第三天走的路程占全程的����此人第一天走的路程比后五天走的路程
多六里��此人后三天共走了��里路二�填空题�本大题共�小题�每小题�分�共计��分����在等差数列����中�已知������������则���的值为��������在等比数列����中��������������则�����������设等差数列����前�项和为���若
������������则����������的最大值为���������在数列����中�已知���������������������������������������则�����������的值是������三�解答
题�本大题共�小题�其中第��小题��分�其余每小题��分�共��分����等差数列����中����������前�项和���������求此数列的通项公式����求前�项和��的最大值����数列����是首项为�的等差数列�且公差不为零�而等比数列����的前三
项分别是������������求数列����的通项公式������若��������������求正整数�的值����已知等差数列����的前�项和为����������且��������������������求数列����的通项
公式����求证������������������已知等差数列����中������前��项和�����������求通项公式������若从数列����中依次取第�项�第�项�第�项���第��项���按原来的顺序组成一个新的数列�����求数列����的前�项和������在等差
数列����中������任意前�项和��满足条件����������������求数列����的通项公式和������记�����������求数列����的前�项和������设数列����的前�项和为���其中������
�为常数�且�����������成等差数列����求����的通项公式����设��������问�是否存在���使数列����为等比数列�若存在�求出��的值�若不存在�请说明理由��