云南师范大学附属中学2021届高三高考适应性月考卷(一)数学(理)试题含答案

DOC
  • 阅读 4 次
  • 下载 0 次
  • 页数 12 页
  • 大小 992.000 KB
  • 2024-09-17 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
云南师范大学附属中学2021届高三高考适应性月考卷(一)数学(理)试题含答案
可在后台配置第一页与第二页中间广告代码
云南师范大学附属中学2021届高三高考适应性月考卷(一)数学(理)试题含答案
可在后台配置第二页与第三页中间广告代码
云南师范大学附属中学2021届高三高考适应性月考卷(一)数学(理)试题含答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的9 已有4人购买 付费阅读2.40 元
/ 12
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】云南师范大学附属中学2021届高三高考适应性月考卷(一)数学(理)试题含答案.doc,共(12)页,992.000 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-78eab906447300f8a406b2cfc669c018.html

以下为本文档部分文字说明:

秘密★启用前云南师范大学附属中学2021届高三高考适应性月考卷(一)理科数学试卷注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B铅笔把答题卡上

对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回,满分150分,考试用时120分钟.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合

221,(,)1MxyxNxyyx==+==−+,则MN=A.1B.(0,1)C.D.(0,1)2.在复平面内,复数21ii−+(i为复数单位)对应的点在A.第一象限B.第二象限C.第三象限.D.第四象限3.若随机变量x~N(1,4),P(x≤0)=0.2,则P(0<x

<2)=A.0.6B.0.4C.0.3D.0.84.已知tan2=,则sin(2)2+=A.35B.45C.35−D.45−5.电影《达.芬奇密码》中,有这样一个情节:故事女主人公的祖父雅克.索尼埃为

了告诉孙女一个惊天的秘密又不被他人所知,就留下了一串奇异的数字13-3-2-21-1-1-8-5,将这串数字从小到大排列,就成为1-1-2-3-5-8-13-21,其特点是从第3个数字起,任何一个数字都是

前面两个数字的和,它来自斐波那契数列,斐波那契数列与黄金分割有紧密的联系,苹果公司的logo(如图1乙和丙)就是利用半径成斐波那契数列(1,1,2,3,5,8,13)的圆切割而成,在图甲的矩形ABCD中,任取一点,则该点落在阴影部分的概率是A.731092B.891092C

1621092.D.1610926.双曲线C:22221(0,0)xyabab−=的右焦点为F(3,0),且点F到双曲线C的一条渐近线的距离为1,则双曲线C的离心率为A.2B.324C233D.237.如图2,在∆ABC中,AC=3,AB=2,∠CAB=60°,点D是

BC边上靠近B的三等分点,则AD=A.373B.979C.439D.4338.在正项等比数列na中,11a=,前三项的和为7,若存在,mnN使得14mnaaa=,则19mn+的最小值为A.23B.43C.83D.1149.如图3,某几何体的三视图

均为边长为2的正方形,则该几何体的体积是A.56B.83C.1D.16310.已知函数2212cos()2cos2xxxxexefxx−+−+=+,则122019()()()202020202020fff+++=A.2019B.2020C.4038D.404011.设动直线x=t与曲线xye=以

及曲线lnyx=分别交于P,Q两点,minPQ表示PQ的最小值,则下列描述正确的是A.min2PQ=B.min32522PQC.min3222PQD.min3PQ12.过抛物线22(0)ypxp=的焦点F作抛物线的弦,与抛物线交于A,B两点,M为AB的中点,分别

过A,B两点作抛物线的切线l1,l2相交于点P.,∆PAB又常被称作阿基米德三角形.下面关于∆PAB的描述:①P点必在抛物线的准线上;②AP⊥PB;③设A(x1,y1),B(x2,y2),则∆PAB的面积S的最小值为22p④PF⊥AB;⑤PM平行于x轴.其中正确的个数是

A.2B.3C.4D.5二、填空题(本大题共4小题,每小题5分,共20分)13.设实数x,y满足0210210xyyxxy−−−+−,则z=x+y的最小值为_________14.在93()xx+的展开式中,则x2的系数为_____________15.已

知P是直线l:260xy++=上一动点,过点P作圆C:22230xyx++−=的两条切线,切点分别为A、B.则四边形PACB面积的最小值为___________。16.已知有两个半径为2的球记为O1,O2,两个半径为3的球记为O3,O4这四个球彼此相外切,现有一个球O与这四个

球O1,O2,O3,O4都相内切,则球O的半径为______。三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知(sinsin)(sinsin)(sinsin)si

nACACABB+−=−(1)求角C;(2)若5c=,且sinsin(2)sin2CCAA++=,求∆ABC的面积.18.(本小题满分12分)某市数学教研员为了解本市高二学生的数学学习情况,从全市高二学生中随机抽取了20名学生,对他们的某次

市统测数学成绩进行统计,统计结果如图4.(1)求x的值和数学成绩在90分以上的人数;(2)用样本估计总体,把频率作为概率,从该市所有的中学生(人数很多)中随机选取4人,用ξ表示所选4人中成绩在110以上的人数,试写出ξ的分布列,并求出ξ的数学期望19.

(本小题满分12分)如图5,在三棱柱ABC-A1B1C1中,AB⊥AC,A1B⊥平面ABC,AB=AC=1,AA1=2(1)证明:平面AA1B⊥平面AA1C1C;(2)求二面角B-AC1-C的正弦值.20.(本小题满分12分)已知点P3(1,)2

−是椭圆C:22221(0)xyabab+=上一点,F1、F2分别是椭圆的左、右焦点,124PFPF+=(1)求椭圆C的标准方程;(2)设直线l不经过P点且与椭圆C相交于A,B两点.若直线PA与直线PB的斜率之和为1,问:直线l是否过定点?证明你的结论21.(本小

题满分12分)已知函数2()(12)ln(0)fxxaxaxaRa=+−−且.(1)讨论函数f(x)的单调性;(2)当a>2时,若函数y=f(x)的图象与x轴交于A,B两点,设线段AB中点的横坐标为x0,证明:'()0fx.

请考生在第22、23两题中任选一题作答,并用2B铅笔在答题卡上把所选题目的题号涂黑注意所做题目的题号必须与所涂题目的题号一致,在答题卡选答区域指定位置答题。如果多做,则按所做的第一题计分.22.(本小题满分10分)[选修4-4:坐标系与参数方程]在直角坐标系中,曲线C1的参数

方程:1cos(sinxy=+=为参数),曲线C2的普通方程:y2=8x,以原点O为极点,x轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系(1)分别求曲线C1、曲线C2的极坐标方

程;(2)射线=3与曲线C1、曲线C2的交点分别为P,Q(均异于O点),C,(1,0),求∆PQC,的面积23.(本小题满分10分)[选修4-5:不等式选讲](1)求函数()2123fxxx=−−+的最大值m;(2)若a>1,b>1,c>1,a+b+c=m,求111111abc++−−−

的最小值.云南师大附中2021届高考适应性月考卷(一)理科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)题号123456789101112答案CDACABADDCBC【解析】1.M是数集,N是点集,故选C.2.2i13

i1i22−=−+,故选D.3.随机变量x~(14)N,,正态曲线的对称轴1x=,所以(02)0.6Px=,故选A.4.221tan3cos21tan5−==−+,故选C.5.22π8π373π(2616)(16

10)1092P+==++,故选A.6.双曲线右焦点(30)F,,即3c=,点F到一条渐近线的距离为b,即1b=,∴2222acb=−=,324cea==,故选B.7.由题意,1121()3333ADABBCABACABABAC=+=+−=+.所以222

1||33ADABAC=+379=,37||3AD=,故选A.8.由260qq+−=,解得2q=(舍负),又由14mnaaa=,得6mn+=,所以19mn+=1198()63mnmn++≥,当且仅当32m=,92n=时,等号成立,但是m,*nN,

故2m=,4n=时,最小值为114,故选D.9.由题意三视图对应的几何体如图1所示,所以几何体的体积为正方体的体积减去2个三棱锥的体积,即3111622222323V=−=,故选D.10.22212cose

e4(ee)22cos2cos2xxxxxxxxfxxx−−+−+−+==+++,令2(ee)()cos2xxxhxx−−=+,则()hx为奇函数,所以()hx关于坐标原点对称,则()fx关于122,成中心对称,则有()

fx+图1(1)4fx−=,所以122019+++4038202020202020fff=…,故选C.11.令()elnxFxx=−,则1()exFxx=−,则存在01222x,,使得0001()e0xFxx=−=,所以()Fx

在0x取得最小值,000001()elnxFxxxx=−=+,在1222,上单调递减,所以有min325||22PQ,故选B.12.设11()Axy,,22()Bxy,,则过A,B的切线方程分别为11yypxpx=+,22yypxpx=+,联立解得122

2yypP+−,,所以P点必在抛物线的准线上,且PM平行于x轴,所以①⑤正确;两条切线的斜率12121ppkkyy==−,所以APPB⊥,②正确;设AB的中点M,则PM平行于x轴,则22212121211||||||2242PAByypSPMyyyypp+=−=+−

△≥,当ABx⊥轴时,取等号,所以③错误;1212212PFAByypkkpyy+==−−+,所以PFAB⊥,④正确,故选C.二、填空题(本大题共4小题,每小题5分,共20分)题号13141516答案231020626【解析】13.不等式组表示的可行域如图2所示,当x,y为直线

0xy−=与210xy+−=的交点1133,时,zxy=+的最小值为23.14.93xx+的展开式的通项公式39219C3rrrrTx−+=,令3932r−=,解得4r=,所以3x的系数为10206.15.圆C:22230xyx++−=的圆心为(10

)−,,四边形PACB的面积SPAAC==22224PCACACPC−=−,所以当PC最小时,四边形PACB面积最图2小.代入点到直线的距离公式,min||5PC=,故四边形PACB面积的最小值为2.16.如图3,由对称性知,

球O的球心在中垂线MN上,设球O的半径为R,在2RtOMN△中,由勾股定理可得23MN=在1RtOMO△中,由勾股定理可得2211MOOOMO=−=22(2)2R−−,2244NOOONO=−22(3)3R=−−,由MONOMN+=,联立解得6R=.三、解答题(共70分.解答应写出文字说明,证明

过程或演算步骤)17.(本小题满分12分)解:(1)已知(sinsin)(sinsin)(sinsin)sinACACABB+−=−,由正弦定理,()()()acacabb+−=−,整理得222ababc=+−,由余弦定理:1cos2C=,又0πC,所以π3C=.……………………………………

…………………………(4分)(2)已知sinsin(2)sin2CCAA++=,整理得sin()sin(π)sin2ABBAA++−+=,sin()sin()sin2ABBAA++−=,即2sincos2sincosBAAA=.①当cos0A=时,AB

C△为直角三角形,115535236ABCS==△;②当cos0A时,sinsinBA=,所以ab=,ABC△为等边三角形,534ABCS=△.……………………(12分)18.(本小题满分12分)解:(1)x的值为10.050.10.150.30.0220x−−−−==

,数学成绩在90分以上的人数:20(0.40.150.05)12++=.…………………………………………………………(4分)(2)把频率作为概率,从该市所有的中学生中任取一人,成绩在110以上的概率0.150.050.2P=+=,图3所以从该市所有的中学生

(人数很多)中随机选取4人,所选4人中成绩在110以上的人数(40.2)B,,随机变量的取值可能为0,1,2,3,4,4(0)0.80.4096P===,134(1)C0.20.80.4096P===,2224(2)C0.20.80

.1536P===,334(3)C0.20.80.0256P===,4(4)0.20.0016P===,随机变量的分布列01234P0.40960.40960.15360.02560.0016随机变量数学期望()40.20.8E==.……………………………(

12分)19.(本小题满分12分)(1)证明:如图4,∵1AB⊥平面ABC,AC平面ABC,∴1ABAC⊥.又∵ABAC⊥,∵1ABABB=,∴1ACAAB⊥平面.又∵11ACAACC平面,∴平面1A

AB⊥平面11AACC.………………………………………………(4分)(2)解:过点A作平面ABC的垂线作为z轴,AB为x轴,AC为y轴,建立如图5所示的空间直角坐标系,则(000)A,,,(100)B,

,,(010)C,,,1(103)A,,,1(113)C,,,图4设平面1ACC的法向量1111()nxyz=,,,则有1111030yxyz=++=,,令11z=,1(301)n=−,,,设平面1ABC的法向量2222

()nxyz=,,,则有2222030xxyz=++=,,令21z=,2(031)n=−,,,向量1n,2n所成角的余弦值:12121cos4||||nnnn==.∴215sin1cos4

=−=,∴二面角1BACC−−的正弦值为154.……………………………………(12分)20.(本小题满分12分)(1)解:由12||||4PFPF+=,得2a=,又312P−,在椭圆上,代入椭

圆方程有221914ab+=,解得3b=,所以椭圆C的标准方程为22143xy+=.………………………………………(4分)(2)证明:当直线l的斜率不存在时,11()Axy,,11()Bxy−,,11121332211

yykkx−−−+==+,解得14x=−,不符合题意;当直线l的斜率存在时,设直线l的方程ykxm=+,11()Axy,,22()Bxy,,由2234120ykxmxy=++−=,,整理得222(34)84120kx

kmxm+++−=,122834kmxxk−+=+,212241234mxxk−=+,22430km=−+.由121kk+=,整理得12125(21)()2402kxxkmxxm−++−++−=

,即(4)(223)0mkmk−−−=.当32mk=+时,此时,直线l过P点,不符合题意;图5当4mk=时,22430km=−+有解,此时直线l:(4)ykx=+过定点(40)−,.……………………………………………………(12分)21.

(本小题满分12分)(1)解:函数()fx的定义域为{|0}xx,22(12)(21)()()0xaxaxxafxxx+−−+−===,解得112x=−(舍去),2xa=.当0a时,()0fx在(0+),上恒成立,所以函数()fx单调递增;当0a时,在

(0)a,上()0fx,函数()fx单调递减,在()a+,上()0fx,函数()fx单调递增.……………………………(4分)(2)证明:由(1)知,当0a时,在(0)a,上()0fx,函数()fx单调递减;在()a+,上()0fx,函数()fx单调递增

,当x→+时,()+fx→,当0x→时,()+fx→,而当2a时,2()ln0faaaaa=−−,所以函数()yfx=的图象与x轴有两个交点.设1(0)Ax,,2(0)Bx,,则有120xax,要证0()0fx,只需证122xxa+,设0xa,令()()(2)Fxfxfa

x=−−,则有()0Fa=,22()()()(2)0(2)xaFxfxfaxxax−−=+−=−,()Fx在(0)a,上单调递减,又()0Fa=,所以()0Fx,即()(2)fxfax−,又10xa,则有11()(2)fxfax−,而由已知12()()0fxfx==,所以

21()(2)fxfax−.又12aax−,2ax,函数()fx在()a+,上()fx单调递增,所以212xax−,即122xxa+,命题得证.……………………………(12分)22.(本小题满分10分)【选修4−4:坐标系与参数方程】解:(1)由曲线1C的参数方程1c

ossinxy=+=,,(为参数),消参得曲线1C的直角坐标方程为22(1)1xy−+=,由cossinxy==,,得曲线1C的极坐标方程为2cos=.曲线2C的极坐标方程为2sin8cos=,………

………………………(5分)(2)1228cos13||||2cossin3PQ=−=−=,点1C到直线||PQ的距离32d=,所以11133||212PQCSPQd==△.………………………………………(10分)23.(本小题满分10分)【选修

4−5:不等式选讲】解:(1)由绝对值不等式()|21||23||2123|4fxxxxx=−−+−−−=≤,所以4m=.………………………………………………………………(5分)(2)由(1)知:4m=,即4abc++=,所以1111abc−+−+−=,由柯西不等式:211

1111(111)(111)9111111abcabcabc++=++−+−+−++=−−−−−−≥,当且仅当43abc===,等号成立.…………………………………………(10分)

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 328857
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?