【文档说明】吉林省长春市农安县2020-2021学年高二上学期期中考试数学(理)答案.pdf,共(4)页,157.924 KB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-661b271be8c2e1464aac8a09eefea477.html
以下为本文档部分文字说明:
高二质量检测(理科)数学评分细则考查时间:120分钟考查内容:必修五一.选择题(本题共12小题,每小题给出的四个选项中只有一个选项符合题目要求.共计60分)123456789101112BCCDDBADCACA二.填空题(本题共4小题,每小题5分,共20分.)13.31,2
14.1415.1216.32n二.解答题(本题共6大题,共70分.)17.(本题10分)解:【详解】(1)因为角B,A,C成等差数列所以2ABC.............................
..........................................2分又∵ABC,所以60A..........................................4分(2)1sin332ABCSbcA△..................
.........................................................10分18.(本题12分)解:(1)不等式2320xx的解集为|12xx,因
为不等式2320xx的解集为|xaxb,所以1a,2b...........................................................5分(2)由(1)可知:不等式为()(2)0xc
x,c为常数,且2c,当2c时解集为{|xxc或2}x;..........................................................9分当2c时解集为{|2xx或}xc.....................
......................................12分19.(本题12分)【解析】解:(1)如图所示,在△ABC中,由正弦定理得,sinsinACABABCACB,........................
.............................3分则36sin45sin23sinsin60ABABCACACB,....................................................6分(2)因为∠A
CB=60°,所以120ACD,.....................................................8分在ACD△中,由余弦定理得,2212cos12092523572ADACCDACCD
................................................12分20.(本题12分)解:(Ⅰ)设等差数列na的公差为d,由已知可得,5249211
{dada解得13,2ad,……………2分,所以321)=2n+1nan(;………4分nS=n(n-1)3n+22=2n+2n………6分(Ⅱ)由(Ⅰ)知2n+1na,所以=211na=21=2n+
1)1(114n(n+1)=111(-)4nn+1……9分所以nT=111111(1-+++-)4223nn+1=11(1-)=4n+1n4(n+1)即数列nb的前n项和nT=n4(n+1)……12分21.(本题12分)解:(1)∵sin3cos0aB
bA,∴2sinsin32sincos0RABRBA.........................................2分化简得sin3cos0AA.....................................
....4分∴tan3A..........................................5分∵0A,∴3A..........................................6分(2)∵3a,
3A,∴222292cosbcbcAbcbc.........................................8分∵222bcbc,∴9bc.∴1393sin244SbcAbc.∵当bc时,9bc,.........................
................10分即3bc时,934S.∴S的最大值为934,此时,3bc..........................................12分22.(本题12分)【详解】(1)当1n时,11122aSa,所以12a,.
.....................................2分当2n时,111222222nnnnnnnaSSaaaa,即12nnaa,...........................6分综上数列
na是以2为首项,公比为2的等比数列,所以1222nnna,所以212nnbn;......................................8分(2)2121212122212nnnnnTn..............
.........................12分