【文档说明】山东省“山东学情”2022届高三上学期10月联合考试数学试题A答案.pdf,共(8)页,976.825 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-5058147c3fd50de797bcf643408732df.html
以下为本文档部分文字说明:
2021年“山东学情”高三10月联合考试数学试题(A)答案1.答案:C解析:由0562xx可知0)5(1xx)(,从而得到A=51,.而B=543,,,两者取交集,选C.2.答案:D3.答案:C解析:设2)
1(,2)(,6)(23fddfddfV4.答案:B解析:令.0,2ttx9282xx即为,98tt得到0892tt得108tt或.解出.03xxx或的范围是
从而选B.5.答案:A解析:函数()sin(2)6fxx的图像向右平移0个单位后得函数=sin2+6gxxsin226x,因为gx为奇函数,所以00g,即sin206
,解得,kZ.6.答案:D解析:因为,终边关于y轴对称,+=+2k,kZtantan,即2ba,2ba.1112222aaba,当且仅当12aa,即22a时等号成立.7.答案:C解析:函数)0()1(222
mmnxmnmxmxy是开口向上且关于直线1x对称的二次函数;函数)0(11peepyxx关于直线1x对称,且在)1,(上单调递增,在),1(上单调递减,方程xxeepnmxmx1122的解的情况可能是无解,一解,两解,且解关于1x对称
.8.答案:B解析:由题意得21()efxa-=有8个不同的实数解,又()fx是定义在,,00上的偶函数,由()fx得图像得22211142eeea---<<,解得24a<<9.答案:ABD解析:函数yfx定义域为R,关于原点对称.2200xxf
xxx<,由图象可知,函数yfx既是奇函数又是增函数;B.函数ygx定义域为R,关于原点对称.122xxgx,显然,函数ygx既=+122k是奇函数又是增函数;C.函数yx定义域为,00∪,+,关于原点对
称.由图象可知,函数不关于原点中心对称,函数yx不满足既是奇函数又是增函数;D.函数yhx定义域为R,关于原点对称.因为22111222log1log1log10hxhxxxxx
,yhx为奇函数,又1221log1hxxx在0,+单调递增,00h且函数在定义域上图象连续,函数yhx在R上单调递增,函数yhx既是奇函数又是增函数.10.答案:AD解析:易得21,
40yx.A项:yxyx222,即yx224,解得2yx,当且仅当1,2yx时取最大值2,A正确;B项:2242424yyyyyx,当且仅当24,2xy时取最大值224,B错误;C项:022142424
yyyxy,C错误;D项:41222yxyxyx,242241xyxy,当且仅当1,2yx取最小值2,D正确.11.答案:AB解析:A.
由M、N关于C对称可得0,3-C,则2)65(32T,T,选项A正确;B.由A知,2,图象过0,3-C,可得3,)3-2sin(xAyZ3,33342,则图象关于点)(0,34成中心对称,选
项B正确;C.函数单调递减,Zkkxk2323222,即Zkkxk1211125,选项C错误;D.函数)(xf在64x上,则03265x,则值域为0,A,选项D错误.12
.答案:ABD解析:B.由2)(xexfx知:ef)1(,9)3(3ef,16)4(4ef则199)1()3(23eeeff,故)1()3(ff;11616)4()1(34eeeff,故)4()1(ff)4()1()3(fff,故B正确;C.2ln)(2x
xxkxexhx02ln2xxkxkxex则222222)(xkxkxxexexhxx3)2(xxex32))(2()2(xkxexxxkx因为)(xh仅有一个极值点,所以)(xh仅有一个变号零点,当0kx
ex没有变号根时,则ky与xexmyx)(至多一个交点,2)1()(xxexmx)(xm在10,上单调递减,在,1上单调递增,故emxm)1()(ek,当2是方程0kxex的一根时,则2不是)(xh的极
值点,且22ek,取xeekxextxx2)(2,则2)(2eextx在,0单调递增又02)1(2eet,02)2(22eet故2,10x,使0)(0xt,即220eex当00xx时
,0)(xt,)(xt单调递减;当0xx时,0)(xt,)(xt单调递增,所以0)1(22)()(02020min0xexeextxtx又01)0(t故)(xt在),0(0x上有一变号零点1x,即)(xh仅有一个极值点,符合题意,综上所述,e
k或22ekC不正确;D.要证exexf2)(,即证exexex22,也就是证22exexxex取22)(exexxexx,则exexexexxexxx2)1(22)1()(22)(x在10,上单调递减,在,1上单调递增
,故0)1()(x,即22exexxexD正确.13.答案:29解析:由)12(aba知abba2,同除以ab得211ba即1)11(21ba.)4)(11(214bababa)(abba44121.由于44ab
ba,得出294ba.求得ba4最小值为29.此时43,23ba.14.答案:21解析:因为(1)(2)fxfx-=+,所以()fx的对称轴为32x=所以5541()()()3332fff-=-=-=-15.答案:64a解析:221xx移项整理可得023xx,解得
32xx.22ax得2121axax.由题意得:221a且321a,从而得出64a.16.答案:),3(解析:当xxfexln1)(,0,切点
,1,1)(),ln1,11'11xkxxfxx(切线,)(1ln1111xxxxy即11ln21xxxy1ln2OxP当1ln)(,2xxfexe,切点,1)(),1ln,'22xxfxx
(,122xk切线,)(11ln222xxxxy即22ln21xxxy22ln22lnOQxx切线互相垂直,11112121xxxx,2221ln2ln2ln2ln2OQOPxxxx,令2,1,ln2txt
2,1,24124)2(22)(tttttttf,)(tf在2,1上单调递增,),(),,(3OQOP3)(tf17.解析:(1)因为p是假命题,所以p是真命题...........
............................................................1分p:)3,1(x,使得042axx......................................................
...........................2分则,,0439041aa解得5a........................................................................................
...........5分(2)由(1)得命题p:5a.............................................................................................
.....6分命题q:11mam...............................................................................................
...........7分由pq得51m.................................................................................................................9分所以4m
.......................................................................................................
...........................10分18.解析:(1)21cossin4sin2sin422cos22………………….……….2tan2………………………….……………..……3分2sin1si
n2sinsincos=sinsincossincossincos22222sinsincostantan6=sincostan15….6(2)2tan6tan10,22tan1tan21tan3………….
.……………………8152tantan233tan(2)1151tantan21233……………….…………….10又0,,0,2,1tan203,20,2,3
+20,2………………………..…….……..…….11432……………………………….…...…...1219.解析:(1)定义域),0(xxxxxxf)1)(12(112)(.......
.............................................1令0)(xf得21x列表如下:x)21,0(21),21()(xf0)(xf递减极小值递增........
............................................3所以,)(xf的极小值点是21,无极大值点.....................................................
4(2)xmexxxxgx221ln)(222))(12()(xmexxxxgx.......................5)(xg在),1[上单调递减0)(xg在),1[上恒成立022xmexx在),1[上恒成立.........
...........6),1[,)(max22xexxmx.......................7令),1[,)(22xexxxhx.......................8021)(22xexxh在),1[上恒成立)(xh
在),1[上单调递减.......................102max2)1()(ehxh.......................11实数m的取值范围是22em......
.................12解析:(1)20.21sin2sincos84421cos2214=sin2222212221cos2sin2cos22442222sin2cos2441sin224fxxxxxxxxxxxx
………………3结合正弦函数的图象与性质,可得当222242kxk即388kxk时,函数单调
递增,……………………4所以函数yfx的单调递增区间为388kkkZ,……………………………5(2)①令24tx,当53,248x时,,6t,111sin,2
42t11sin0,22yt(如图).…………7要使yfxm在区间53,248上恰有两个零点,m的取值范围为1142m<<或0m.……………9②设1
t,2t是函数1sin2ytm的两个零点(即1124tx,2224tx),由正弦函数图象性质可知12tt,即122244xx.124xx,…………………………………………11122sin2xx
.……………………………1221.解析:定义域),0(,xaxaxxxf22121)(....................................................1(1)①0a时,0)(xf,)(xf在),0(上
单调递增;............................................2②0a时,令0)(xf,得ax21..........................................3列表如下:xy0π2π-𝜋61412)(xf在)21,0(a上
单调递增,在),21(a上单调递减...........................................4综上,0a时)(xf在),0(上单调递增;0a时)(xf在)21,0(a上单调递增,在),21
(a上单调递减...................5(2)当0a时,由(1)知①当121a,即21a时,)(xf在]2,1[上单调递减,afxf)1()(max............7②当2211a,即2181a时,)(xf在
]21,1[a上单调递增,在]2,21(a上单调递减,212ln21)21()(maxaafxf...........................................9③当221a,即810a时,)(xf在]2,1[上单调递增,afxf42ln
)2()(max.....11综上,21,2181,212ln21810,42ln)(maxaaaaaaxf...........................................1222.解析
:(1)令)0()(1xxexgx..............................................11)(1xexg令0)(xg,得1x列表如下:x)1,0(1),1()(xg0
)(xg递减极小值递增01)1()(0minegxg.......................................................2xex1,当且仅当1x时取等号......................
..............................3x)21,0(aa21),21(a)(xf0)(xf递增极大值递减再令)0(sin)(xxxxh.............................................40cos1)(xxh
在),0(上恒成立,)(xh在),0(上单调递增0)0()(hxh....................................5)0(sinxxx...............
..........................6当0x时,xxexsin1当0x时,0)(xf.........................7(2)由(1)知,当0x时,xex
1,即)0(1lnxxx,当且仅当1x时取等号.......8Nn,且2n,1ln22nn........................9211lnnnn...............................
.....................114)1321(21)1ln(22nnniini.....................12当Nn,且2n时,4)1ln(22nniini
....................12