【文档说明】四川省大数据精准联盟2021届高三下学期5月第三次统一监测文科数学答案.pdf,共(8)页,506.729 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-1cb51eb318b1e39162d1940577f49c0c.html
以下为本文档部分文字说明:
文科数学答案第1页(共8页)四川省大数据精准教学联盟2018级高三第三次统一监测文科数学命题意图及参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题意图:本小题主要考查集合的并集、补集的概念及其运算等基础知识;考查运算
求解能力。答案A.因为=1,2,3,5,6,7,9AB,所以()UABð4,8.2.命题意图:本小题主要考查复数的除法运算和复数的模的概念等基础知识;考查运算求解能力。答案C.法1:由2i(2i)(1i)13i1i(1i)(1i)2z
,所以221310()()222z.法2:22222i215101i221(1)z.3.命题意图:本小题主要考查向量垂直的几何意义、充要条件等基础知识;考查逻辑推理能力,化归与转化等数学思想。答案C.因为ab,所以0
ab,则22222()2abaabbab,所以“ab”是“222abab”的充分条件;反之,由222abab有0ab,所以非零向量,ab垂直,“ab”是“222
abab”的必要条件.4.命题意图:本小题主要考查统计图表等基础知识;考查统计思想和应用意识。答案C.由于到甲、乙、丙社区参加志愿者活动的学生所占比例分别为15%,20%,15%,且甲社区的志愿者学生人数为15,则丙、丁社区志愿者学生人数分别为20,15,所以,到戊社区参加志愿
者活动的学生数为1001520153020.5.答案D.因直线与圆相切,所以圆的半径等于点(11),到直线20xy的距离,即22|112|221(1)Rd,则所求圆的方程为22(1)(1)
8xy.命题意图:本小题主要考查直线与圆相切的性质、圆的标准方程等基础知识;考查运算求解能力;考查化归与转化、数形结合等数学思想。6.命题意图:本小题主要考查等差数列的性质,通项公式和公差等基础知识;考查运算求解能力;考查化归与转化、方程等数学思想和应用意识。答案D.由
1946192257aaaaaa,,所以19aa,是方程222570xx的两实数根,解得19319aa,,或19193aa,,所以公差9128aad或2.7.命题意图:本小题主要考查不等式、函数性质等基本知识;
考查化归与转化等数学思想。文科数学答案第2页(共8页)答案D.对于A,由0ab知,22ab不一定成立;对于B,由2()0abbbab,知2abb;对于C,取14a,14b,则1ln()ln02ab,C也不一定成立;由ab,知21ab,
D项正确.8.命题意图:本小题主要考查多面体三视图、直观图等基础知识;考查空间想象、运算求解能力;考查数形结合等数学思想。答案B.该几何体的直观图为如图所示的三棱锥,底面是等腰直角三角形,高为2,则体积114(22)2323
V.9.命题意图:本小题主要考查双曲线的定义、标准方程和几何性质等基础知识;考查运算求解、推理论证等数学能力及创新意识;考查数形结合、化归与转化等数学思想。答案D.由题||ABc,||AFac,22||BFbc,因为△ABF为等腰三
角形,所以||||AFBF,则22acbc,化为22220caca,即2220ee,解得31e.10.命题意图:本小题主要考查几何概型等基础知识;考查运算求解等能力;考查化归与转化等数学思想。答案C.由题
,121aa,32a,43a,55a,则阴影部分面积为222123π(4aaa2245)aa22222π(11235)410π,扇形OAB的面积为28π16π4,所以在该扇形内任取一点,则该点在图中阴影部分的概率为10π516π8.11.命题意图:本小题主要考
查三角函数图象及其性质、命题判断等基础知识;考查运算求解能力、逻辑推理能力;考查化归与转化和数形结合等数学思想。答案D.因为()sin3cos=2sin()3fxxxx,结合图象易知A,B,C结论不正确;对于选项D,不妨看第一象限的交点,由2sin()1(0)3xx,得2()2xk
kZ或72(6xkkZ),依次得到交点横坐标123475192626xxxx,,,,……,所以交点间的最小距离等于213xx.12.命题意图:本小题主要考查函数的性质、不等式等基础知识;考查抽象概括、运算求解等数学能力;考查
化归与转化等数学思想。答案C.由题120xx且12()()fxgx,2120xx.有212222lnxxxx,则212xx2222ln2xxx,令()2ln2xxuxx(0x且1x,()0ux).(1)当01x
时,知()0ux,不满足条件.(2)当1x时,知()0ux,由222lnln1()lnxxuxx2(2ln1)(ln1)lnxxx,令()0ux,则1ex,21ex(舍去),若1ex,则()0ux;若ex,则()0ux,则
ex时取得极小值(e)4e2u,文科数学答案第3页(共8页)也为最小值,则()(e)uxu≥,即212xx4e2≥,所以212xx的最小值为4e2.二、填空题:本题共4小题,每小题5分,共20分。13.命题意图:本小题主要考查平面向量的模,两个向量的差的运算等基础知识;考查运算
求解能力及应用意识。答案37.由题意得:2222|2||2|2|2|||cos||16129373abaabb,所以|2|37ab.14.命题意图:本小题主要考查等比数列定义、
前n项和公式、递推数列等基础知识:考查运算求解能力,化归与转化等数学思想。答案54.方法1:由an=2Sn-1(n≥2)有Sn=3Sn-1(n≥2),所以{}nS是以2为首项,3为公比的等比数列,所以S4=S1q3=2×33=
54.方法2:由已知,a2=2S1=4,a3=2S2=2(2+4)=12,a4=2S3=2(2+4+12)=36,所以S4=2+4+12+36=54.15.命题意图:本小题主要考查椭圆的定义、标准方程、直线的方程、直线与椭圆位置关系、平面向量的数乘运算等基础知识;考查运算求解、
推理论证等数学能力及创新意识;考查数形结合、化归与转化等数学思想。答案13.设1122(,),(,)AxyBxy,由题意知直线l的方程为1yx.由22AFFB,得1122(1,)(1,)xyxy,则有12y
y.……①由22112yxxy,消去x,得23210yy.所以12113yy,,代入①得13.16.命题意图:本小题主要考查直线与平面所成的角、直线与平面平行判定定理、直线与平面垂直判定定理、性质定理等基础知识;考查逻辑推理、空间
想象能力;考查化归转化等数学思想。答案①②④.设AC与BD相交于点O.由已知,AC⊥BD,AC⊥ED,所以AC⊥PD,①真;易知,直线PD与平面所成的角等于∠BDP,最小为∠BDF(其正弦值为55),最大为π2(即∠BDE),②真;若DP⊥平面ACF,则DPFO,
当P在线段EF上运动时,在题设条件下DPFO不成立,③假;当点P为EF的中点时,DP∥OF,④真.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。(一)必考题:共60分。17.(12分)命题意图:本小题主要考查回归方程、统计案例等基本知识;考查统计基本思想以及抽象概括、数据处理等
能力和应用意识。(1)模型②ˆyabx的拟合效果最好.·············································2分文科数学答案第4页(共8页)(2)令tx,知y与x可用线性
方程ˆyabt拟合,则91921()()21.315.9533.58()iiiiittyybtt,235.9532.1510.20aybt,·····6分所以,y关于t的线性回归方程为
10.205.95yt,所以y关于x的回归方程为10.205.95yx.·······································8分(3)2021年10月,即16x时,10.205.951634y(万人),此
时,外地游客可为该县带来的生态旅游收入为3400万元.······················12分18.(12分)命题意图:本小题主要考查正余弦定理及其应用、特殊角的三角函数值、两角和差的正余弦公式应用等基础知识;考查运算求解
能力、推理论证能力;化归与转化数学思想。(1)由(2)coscos0bcAaC,根据正弦定理,有(2sinsin)cossincos0BCAAC.·····················································2分所以2sinc
ossincossincos0BACAAC,所以2sincossin()0BACA,即2sincossin0BAB.···································································4分因为0B,所
以sin0B,所以1cos2A,因为0A,所以3A.·······························································6分(2)由(1)知3A,所以3BC,则(0)33CBB,由正弦定理:sins
insinabcABC得23sinsinsin()33bcBB,所以4sin4sin()=23cos2sin3bBcBBB,.·······························
····9分所以4sin23cos2sinbcBBB2sin+23cosBB13=4(sin+cos)22BB4sin()3B.因为03B,所以3sin()123B≤,文科数学答案第5页(共8页)所以当6BC时,bc的最大值为4.
················································12分19.(12分)命题意图:本小题主要考查旋转体、直线与平面平行的判定、三棱锥体积、三角形重心性质、球体等基础知识;考查逻辑推理、运算求解、
空间想象等能力及创新意识;考查化归转化、数形结合等数学思想。(1)连接AG并延长交BC于F点,连接DF,·······································1分因为G为△ABC的重心,所以23AGAF.·
··············································································2分因为2AEED,所以23AEAD
,···············································································3分则AEAGADAF,所以EGDF∥.·······································
······················4分又EG面BCD,DF面BCD,所以EG∥面BCD.·········································································
··6分(2)当三棱锥DABC体积最大时,平面ABD平面ABC,且ABC△和ABD△为等腰直角三角形,则22ACBCADBD.·····························································8分所
以22()33GCDEOCDEOACDOACEVVVV2()3DAOCEAOCVV2112()3333AOCAOCSDOSDO2183927AOCSDO.························12
分20.(12分)命题意图:本小题主要考查抛物线的定义、直线的斜率、直线与抛物线的位置关系等基础知识;考查逻辑推理、运算求解等数学能力;考查数形结合、化归与转化、分类与整合等数学思想。(1)由已知,线段PF的长度等于P到01lx:的距离,·······
··················2分则点P的轨迹是以(1,0)F为焦点,01lx:为准线的抛物线,所以E的方程为24yx.·················································
···················4分(2)将1x代入24yx得2t.易知直线CD斜率存在,设为k,知0k,直线CD方程为ykxb.········6分由24yxykxb,得222(
24)0kxbkxb.则22242CDCDbkbxxxxkk,.……..①············································8分文科数学答案第6页(共8页)易知,2211DDADDDykxbkxx
,2211CCACCCykxbkxx,因为直线AC,AD的斜率互为相反数,所以22(2)()2(2)2011(1)(1)CCDCDDACADCDCDkxbkxxbkxxbkxbkkxxxx,变形可得2(
2)()2(2)0CDCDkxxbkxxb.……②·····················10分联立①②得2(1)20kbkb,所以12kkb或.若2kb,则CD的方程为2(1)2ykxkk
x,恒过点(1,2)A,不合题意;所以1k,即直线CD的斜率为定值-1.···········································12分21.(12分)命题意图:本小题主要考查导数的
几何意义、导数及其应用、函数单调性、函数极值与最值等基础知识;考查推理论证、运算求解等数学能力和创新意识;考查分类与整合、函数与方程及数形结合等数学思想。(1)ea时,()eeelnxxxf,其中0x,则
e()exfxx,·············1分可知()fx为(0,)的增函数,且0(1)f,············································2分当01x,()0
fx,()fx单调递减;当1x,()0fx,()fx单调递增,所以,()fx的单调递减区间为(0,1),递增区间为(1,).·························4分(2)由题知0x,a
>0,()exafxx,可知()fx在区间(0,)上单调递增,且当0x时,()0fx,当x时,()0fx,(此处也可利用函数exy与ayx图象在第一象限有交点来描述)所以,存在0(0)x,,使得0(0)fx,即00exax,····
·························6分当0(0,)xx时,()0fx,()fx在0(0,)x上单调递减;当0(,)xx时,()0fx,()fx在0(,)x上单调递增,所以,0min0000()(elnln
lnn)l0xafxfxaxaaaxaax≥,·············8分即001lnln0xax≥,由00exax,得00exax,即00lnlnaxx,所以00001lnln0xxxx≥,即00012ln0xxx≤,由于1()2ln
uxxxx为(0,)的单调递增函数,且(1)0u,文科数学答案第7页(共8页)则有001x≤,·········································································
·······10分因为()exvxx为(0,1]上的增函数,则当(0,1]x时,()(0,e]vx,所以,a的取值范围为(0,e].······························
·································12分(二)选考题:共10分。请考生在第22、23题中任选一题作答。22.[选修4-4:坐标系与参数方程](10分)命题意图:本小题主要考查曲线的直角坐标方程与极坐标方程
的互化、极角与极径的几何意义等基础知识;考查逻辑推理、运算求解等数学能力;考查化归与转化、数形结合等数学思想。(1)将cossinxy,代入22(2)4xy,化简得=4sin.········
··········2分设点C的极坐标为(,),依题意可知π(,),(,)223BA.····················4分因为点A在曲线1C上,带入其方程可得π=4sin()23,即π=8sin()3.·························
····················································5分故曲线12CC,的极坐标方程分别为=4sin,π=8sin()3.(2)联立=4sin=8sin()3,可得π(4,)2M;···········
·······················6分将π=3代入=4sin中,得π(23,)3P;··············································7分将π=3代入π=8sin()3中,得π(43,)3Q.··············
···························8分显然,π6MOPMOQ,故MPQOMQOMPSSS11||||sin||||sin2322OMOQMOQOMOPMOP.·························10分
23.[选修4-5:不等式选讲](10分)命题意图:本小题主要考查含绝对值的不等式、基本不等式、不等式证明方法等基础知识;考查运算求解、推理论证等数学能力;考查分类与整合、函数与方程、化归与转化等数学思想
。(1)由题()|21||2|fxxx当12x时,()fx212332xxxx≤,得35x≥,此时不成立;····1分当122x≤≤时,()fx21212xxxx≤,得1x≥,此时取12x≤≤;·····························
··········································································2分当2x时,()fx212332xxxx≤,得3x≤,此时取23x≤
.·3分综上,不等式的解集为{|13}xx≤≤.···················································4分文科数学答案第8页(共8页)(2)2222221121111(1)(1)ababab2222222(1)(1)
(1)(1)ababab22221(1)(1)abab.········································································6分因为正实数
ab,满足22abab≥,即有1ab≤,则222210(1)(1)abab≥,所以2211111ab≥,······························································
········8分由(1)已知函数()fx为[1,)的增函数,所以2211()11fab≥(1)f.·····························································10分