【文档说明】山东省枣庄市第三中学2022-2023学年高二上学期1月期末考试数学试题答案.pdf,共(6)页,657.011 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-fb21283b0a8025e180e0a2c2c7083048.html
以下为本文档部分文字说明:
答案第1页,共5页枣庄三中2022-2023学年度高二上网课质量线上检测数学参考答案一、单选题1.A2.B3.C4.C5.B6.C7.C8.A二、多选题9.AB10.AD11.AC12.ABD三、填空题13.214.2p(答案不唯一,不小于2的实数均正
确)15.1x;240xy.16.n四、解答题17.(1)证明:当12AA时,12,2BEBE,所以22211BEBEBB,所以1BEBE…………………………..2分又11AB平面11BCCB,则11A
BBE.因为1111ABBEB,所以BE平面11ABE,…………………………..4分又BE平面BDE,所以平面BDE平面11ABE.…………………………..5分(2)以D为原点,1,,DADCDD所在直线分别为,,xyz轴,建立如图所示的空间直角坐标系Dxyz,则
130,0,0,1,1,0,1,0,3,0,1,2DBAE.所以131,1,0,0,1,,1,0,32DBDEDA.设平面BDE的法向量为,,nxyz,则0,0,nDBnDE即0,30,2xyyz不妨令
2z,则3,3yx,得3,3,2n.…………………………..8分答案第2页,共5页故1A到平面BDE的距离199222222nDAdn.…………………………..10分18.(1)解:各项均为正数的等差数列{}na满足11a,22112()nnnnaaaa
,整理得1102nnnnaaaa,…………………………..2分由于10nnaa,所以12nnaa,…………………………..4分故数列{}na是以1为首项,2为公差的等差数列.所以21nan.…………………………..6分(2
)解:由(1)可得111212122121nnnnnbaann,…………………………..9分所以11(3153...2121)(211)22nSnnn.……………………..12分19.(1)解:圆心为1
,0C,圆C的半径为2r,圆心C到直线0xy的距离为1222d,…………………………..2分因此,直线yx被圆C所截得的弦长为22214rd.…………………………..4分(2)解;设点00,Axy、,Mxy,由题意可得13AMAB
,即0000143133xxxyyy,可得003223322xxyy,………………..8分因为点A在圆C上,所以,220014xy,即2233314222xy,………….10分化简
可得22216139xy,故点M的轨迹方程为22216139xy.…………………………..12分20.(1)证明:∵A1D⊥BE,DE⊥BE,A1D∩DE=D,答案第3页,共5页∴BE⊥平面A1DE.∵A1E⊂平面A1DE,∴A1E⊥BE
.…………………………..2分又∵A1E⊥DE,BE∩DE=E,∴A1E⊥平面BCDE.…………………………..4分(2)假设在线段BD上存在点P,使平面1AEP平面1ABD.根据(1)可建立如图所示空间直角坐标系,则
11,0,0,0,3,0,0,0,1BDA,111,0,1,0,3,1ABAD,……………………..6分设,,,01PxyzBPBD,则1,,1,3,0xyz,所以
1,3,0P,…………………………..8分所以10,0,1,1,3,0EAEP,设平面1AEP一个法向量为111,,mxyz,则100mEAmEP,即1110130zxy,令113,1xy,
所以3,1,0m,…………………………..9分设平面1ABD一个法向量为222,,nxyz,则1100nABnAD,即2222030xzyz,令2221,3yzx,所以31,3n,,…………
………………..10分因为平面1AEP平面1ABD,所以0mn,即310,解得14.所以在线段BD上是否存在点P,使平面1AEP平面1ABD,且14BPBD.………………..12分21.(
1)因为1nnaS,所以当2n时,1nnaS,答案第4页,共5页xyNMAOPQ由此可得11nnnnnaaSSa,所以12nnaa,其中121aS,所以当2n时,22
222nnnaa,…………………………..2分11a不符合上式,…………………………..3分所以21,12,2nnnan.…………………………..4分(2)由(1)得2224424nnnnbnann,123114
2434(1)44nnnTnn,221141424(2)4(1)44nnnnTnnn,…………………………..6分可得21114144134444441
433nnnnnnTnnn,……………8分整理得1414939nnnT.…………………………..12分22.(1)因为A为椭圆C:22184xy的左顶点,故(22,0)A设00(,
)Mxy,则00(,)Nxy.故直线AM的斜率01022ykx,直线AN的斜率002002222yykxx,故22001220008(22)(22)yykkxxx.·······································
·········3分又00(,)Mxy是C:22184xy上的点,故2200184xy,即22001(8)2yx.故1212kk.········································
·········································4分(2)设11(,)Pxy,22(,)Qxy,直线AM的方程为122xmy.代入22184xy得2211(2)420mymy.于是有0y,或121422mym,故1021422mym.··············
··························5分答案第5页,共5页将AM的方程122xmy代入228xy得2211(1)420mymy.于是有0y,或121421mym,故1121421mym.·······································6分所以20121
112ymAMAPym.·····································································7分设直线AN的方程为222xmy.同理可得222212mA
NAQm.·····················8分又1212kk,故12112mm,即122mm.故2221222114224mmANAQmm.··········································
························9分所以2222111112222211114(1)(4)1=2242(2)SmmmmAMANSAPAQmmm.·······················10分令212mt,则1222
1(1)(2)121=(1)22SttSttt2119()416t.当114t时,即4t,即2124m,即212m时,12SS取得最大值916.······12分获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com