内蒙古海拉尔第二中学2021-2022学年高三上学期期末考试数学(文)答案

DOC
  • 阅读 10 次
  • 下载 0 次
  • 页数 6 页
  • 大小 85.263 KB
  • 2024-12-09 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【管理员店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
内蒙古海拉尔第二中学2021-2022学年高三上学期期末考试数学(文)答案
可在后台配置第一页与第二页中间广告代码
内蒙古海拉尔第二中学2021-2022学年高三上学期期末考试数学(文)答案
可在后台配置第二页与第三页中间广告代码
内蒙古海拉尔第二中学2021-2022学年高三上学期期末考试数学(文)答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的3 已有10人购买 付费阅读2.40 元
/ 6
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】内蒙古海拉尔第二中学2021-2022学年高三上学期期末考试数学(文)答案.docx,共(6)页,85.263 KB,由管理员店铺上传

转载请保留链接:https://www.doc5u.com/view-de35fb67db45bda864133ed51d721079.html

以下为本文档部分文字说明:

一、选择题CCBBBDABABDC二、填空题−1721043:13−三、解答题17.解:(1)∵cos2(𝜋2+𝐴)+cos𝐴=54,化简得cos2𝐴−cos𝐴+14=0,解得cos𝐴=12,又𝐴是𝛥𝐴𝐵𝐶的内角

,故𝐴=𝜋3.(2)证明:∵𝑏−𝑐=√33𝑎,𝐴=𝜋3,由正弦定理可得sin𝐵−sin𝐶=√33sin𝐴=12,又𝐵=𝜋−𝐴−𝐶=2𝜋3−𝐶,∴sin(2𝜋3−𝐶)−sin𝐶=12,化简可得√32cos𝐶−12sin𝐶=12,即可得cos(𝐶+�

�6)=12,又𝐶∈(0,2𝜋3),得𝐶+𝜋6∈(𝜋6,5𝜋6),故可得𝐶+𝜋6=𝜋3,即𝐶=𝜋6,故𝐴+𝐶=𝜋3+𝜋6=𝜋2,∴𝛥𝐴𝐵𝐶是直角三角形.18.(1)由3S3=2S2+S4,可得2S3

-2S2=S4-S3.所以公比q=2,又a5=32,故an=2n.4分(2)因为bn=1log2an·log2an+2=121n-1n+2,6分所以Tn=121-13+12-14+13-15+…+1n-

1n+29分=1232-1n+1-1n+2=34-12n+2-12n+4.12分19.证明:(1)如图所示:取𝑃𝐵中点𝑄,连𝑀𝑄、𝑁𝑄,∵𝑀、𝑁分别是𝐴𝐵、𝑃𝐶的中点,∴𝑁

𝑄//𝐵𝐶,∵𝐴𝐷//𝐵𝐶,∴𝑁𝑄//𝐴𝐷,又∵𝑁𝑄⊂平面𝑀𝑁𝑄,𝐴𝐷⊄平面𝑃𝐴𝐷,∴𝑁𝑄//平面𝑃𝐴𝐷,同理可得𝑀𝑄//平面𝑃𝐴𝐷,又因为𝑁𝑄∩𝑀𝑄=𝑀,𝑁𝑄、𝑀𝑄⊂平面𝑀𝑁

𝑄,∴平面𝑀𝑁𝑄//平面𝑃𝐴𝐷,∵𝑀𝑁⊂平面𝑀𝑁𝑄,∴𝑀𝑁//面𝑃𝐴𝐷;(2)由(1)可知𝑄在𝑃𝐵的中点上.20.解(1)由a=2,得f(x)=|2x-1|-|2x-2|,①当x≤12时,f(x)=-1≥12x⇒x≤-2;②当12

<x<1时,f(x)=4x-3≥12x⇒67≤x<1;③当x≥1时,f(x)=1≥12x⇒1≤x≤2,综上所述,不等式的解集为x∈(-∞,-2]∪67,2.4分(2)由绝对值三角不等式可得|2x-1|-|2x-a|≤|(2x-1)-(2x-a)|=|

a-1|=a-1,∴1b+2c=a-M=a-(a-1)=1⇒1b+2c=1⇒b=cc-2,∵b>0,c>0,∴c>2,6分∴2b-1+1c-2=2cc-2-1+1c-2=c-2+1c-2≥2(c-2)×1c-2=2,∴2b-1+1c-2的最小值为2,当且仅当c-2=1c-2

,即c=3时取等号.10分21.(1)由题意,椭圆C的离心率22e=,且椭圆上一动点M到2F的最远距离为21+,可得2222221ceaacabc==+=+=+,解得211acb===,所以椭圆的标准方程为2212x

y+=.(2)由题意可知,当k不存在时,1FAB不符合题意.设直线ABl:()1ykx=−,则1AFl:()11yxk=−+,∴()()111ykxyxk=−=−+,得()2211kxk+=−,∴22212,11

kkAkk−−++∴()()()222222218211kkkk−+=++,427610kk−−=,∴21k=,直线AB的方程为1yx=−+或1yx=−.22.解:(1)当𝑎=1时,𝑓(𝑥)=e𝑥−(𝑥+2),则𝑓′(𝑥)=e𝑥−1,令𝑓′(�

�)>0,得𝑥>0;令𝑓′(𝑥)<0,得𝑥<0,从而𝑓(𝑥)在(−∞,0)上单调递减;在(0,+∞)上单调递增.(2)令,显然𝑥≠−2,所以,令,问题转化为直线𝑦=𝑎与函数𝑦=𝑔(𝑥)的图象有两个交点,所以,当𝑥<−2时,𝑔′(𝑥)<0

,𝑔(𝑥)单调递减;当−2<𝑥<−1时,𝑔′(𝑥)<0,𝑔(𝑥)单调递减;当𝑥>−1时,𝑔′(𝑥)>0,𝑔(𝑥)单调递增,所以𝑔(𝑥)的极小值为,当𝑥<−2时,𝑔(𝑥)<0,当𝑥>−2时,𝑔(𝑥)>0,所以当时,𝑦

=𝑎与𝑔(𝑥)的图象有两个交点,所以𝑎的取值范围为(1e,+∞).【解析】本题考查利用导数判断函数的单调性,利用导数研究函数的零点,属于中档题.(1)先求导,根据导函数的正负可得出函数的单调性;(2)先分离参数得,再构造函数,利用导数研究函数的单调性与极值,即可得出𝑎的取值

范围.获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com

管理员店铺
管理员店铺
管理员店铺
  • 文档 483495
  • 被下载 24
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?