【文档说明】河南省开封市五县联考2020-2021学年高二下学期期末考试数学(理)答案.pdf,共(8)页,256.627 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-b56e3ce9b639f1dd4aaa9d550a9e0ea6.html
以下为本文档部分文字说明:
【高二期末考试﹒数学卷参考答案第1页(共8页)】开封市五县2020~2021学年下学期高二期末考试﹒数学参考答案.提示及评分细则1.B由不等式290x,解得33x,即集合2ln933Bxy
xxx,又由AZ,所以2,1,0,1,2AB.故选:B.2.B因为21(1)12iizii,所以221zziii,因此复数2zz在复平面内对应的点为1,
1,可知其在曲线3yx上.故选:B.3.C∵1,ab223,ab334ab,447,ab5511,ab...∴通过观察发现,从第三项起,等式右边的常数分别为其前两项等式右边的常数的和.∴6
611718ab,77181129ab,88291847ab.故选C.4.B5.D43111,1xxfxxx,当01x时,3()11fxx,故433(1)(2)ffxfxx,而43(2)x
的展开式共有5项,故其中二项式系数最大值为246C,故选D.6.A因为esinesin()(1(1)2()sin()e1e1e11)xxxxxxxfxxfx,所以()fx在区间π
π(-,)22上是偶函数,故排除B、D,又(1)(1)sin10e12f,故排除C;故选A。7.D解∵三个区域至少有一个安保小组,所以可以把5个安保小组分成三组,一种是按照1、1、3,另一种是1、2、2;当按照1、1、3来分时共有11335431
32260CCCNAA,当按照1、2、2来分时共有2213531232290CCCNAA,根据分类计数原理知共有,故12150NNN,选D.8.B令33tangxaxbxcx,则
gxgx,所以221fxgxx,由210f可知,224=2110fg,即12=g,2=929=1298fgg,故选:B.9.A根据解析式知:()fx为偶函数,定义域为{|1}xx,故l
n3ln3bff.【高二期末考试﹒数学卷参考答案第2页(共8页)】当0x且1x,()lnxfxx,2ln1lnxfxx,则:当(0,1)x时,0fx,()fx单调递减且()0fx;当(1,)xe时,0fx,()fx单调递减且()0fx;当(,
)xe时,0fx,()fx单调递增且()0fx,如图:由于0ln21,所以ln20af;1lnln3ee,所以ln3ln3bffcfee;综上:acb;故选:A10.D因为函数l
n1fxxx的图象总在直线yax的上方,所以ln10gxfxyxxax恒成立,'ln10gxxax,令'0gx,解得1axe,gx在10,ae递减,在1,ae递增,111min11aa
agxgeeaae110ae,即11,ae10a,实数a的取值范围是,1,故选:D.11.C函数2()()fxgxx,则由()fx是定义在R上的偶函数,可得函数()gx也
是偶函数,且0x,所以1ln(ln)(ln)ggxgxx,则原不等式可变形为(ln)(1)(|ln|)(1)gxggxg.【高二期末考试﹒数学卷参考答案第3页(共8页)】当(0,)x时,243()2()()2()()0xfxxfxxfxfxgx
xx所以函数()gx在(0,)上为增函数,所以不等式(|ln|)(1)gxg可化为0|ln|11ln0xx或10ln11exx或1ex.故选:C.12.D令21()()
22gxfxxx,则()()2gxfxx.∵当1x时,恒有'2fxx,即()0gx,∴当1x时,函数g(x)为减函数.而21(2)(2)2(2)(2)2gxfxxx,∴2211()(2)()2(2)2(2)(2)22fxfxgxxxgxx
x22()(2)2221gxgxxxxx.∴()(2)3gxgx.∴函数g(x)的图象关于点(1,3/2)对称,∴函数g(x)在R上为减函数.由3132fmfmm,得2211()2
(1)2(1)(1)22fmmmfmmm,即()(1)gmgm,∴1mm,解得12m.∴实数m的取值范围是1,2.13.9690由题意,509630506.89290ayt,所以回归方
程为929050yx,当64x时,月产利润y的预报值ˆ92905089690y千元.故答案为:9690.14.(1313),1(3)(1)[1(13)](13)0.68262PPPP11,13,
因此2,由题意,数形结合可知只需圆心(0,0)到直线的距离d满足01d即可.∵2213125ccd,013c,即(13,13)c.【高二期末考试﹒数学卷参考答案第4页(共8页)】15.1,82156根据题意,得
到fx的图象如下:由图可知,fx是偶函数,又yfxmx恰有10个不同零点,即yfx与ymx的图象有10个交点,根据偶函数的特点,则在0x的图象中,有5个交点,如图中红色直线和蓝色直线就是两种极限情况。红色直线:过6,1,则16m;蓝色直线:与区间3,4处的
曲线2815yxx相切,所以2815=xxmx只有一个解,解得8215m,182156m16.e2解:设f(x)=lnx+2+,则f′(x)=﹣=,∵a>0,∴函数f(x)在(0,a)上单调递减,在(a,+∞)上为增函数,即当x=a
时,函数f(x)取得最小值f(a)=lna+3,由3+lna≥b得≤,设g(a)=,则g′(a)=,由g′(a)>0,得0<a<.由g′(a)<0,得a>.即当a=时,g(a)取得最大值,最大值为g()=e2,故的最大值为e2,故答案为:e2.17.解(
1)由22430xaxa得30xaxa当1a时,1<3x,即p为真时实数x的取值范围是1<3x.·········································
·························1分【高二期末考试﹒数学卷参考答案第5页(共8页)】由|x-3|≤1,得-1≤x-3≤1,得2≤x≤4即q为真时实数x的取值范围是2≤x≤4,·········2分若pq为真,则p真且q真,所以实数x的取值范围是2≤x<3.······
················4分(2)由22430xaxa得30xaxa,p是q的充分不必要条件,即pq,且qp,设A={|}xp,B={|}xq,则AB,················6分又A={
|}xp={|3}xxaxa或,B={|}xq={x|x>4或x<2},······················8分则3a>4且a<2··································
·······························10分其中0a所以实数a的取值范围是423a.······································12分18.解(1)令120xx,代入得1210ffxfx
,故10f;···········2分(2)任取12,0,xx,且12xx,则121xx,由于当1x时,0fx,··········4分所以120xfx,即120f
xfx,因此12fxfx,·······················6分所以函数fx在区间0,上是单调递减函数;····································8
分(3)由1122xffxfxx,得9933fff,而31f,所以92f,由函数fx在区间0,上是单调递减函数,且29fxf,··················
··10分得209x,∴30x或03x,因此不等式的解集为3,00,3.········12分19.解(1)函数21xxxfxe定义域为R,······························
········1分且22211xxxxxexxefxe······································2分22211=xxxxexxee22=xxxe12=xxxe,·······
·········································3分∵曲线yfx在点0,0f处的切线斜率02kf,··························4分又01f,则切点为0,1,【高二期末考试﹒数学卷参考
答案第6页(共8页)】∴所求切线方程为120yx即210xy.·····························6分(2)∵12xxxfxe又>0xe,··········································7
分由0fx得1x或2x,当,1x和2,+时,0fx,此时fx为减函数;·······················9分当1,2x时,0fx,此时fx为增函数,············
··················10分由fx的单调性知函数的极小值为1fe,极大值为22525=fee.········12分20解(1)设事件A为“核酸检测呈阳性“,事件B为“患疾病”···················1分
由题意可得P(A)=0.02,P(B)=0.003,P(A|B)=0.98,···················2分由条件概率公式得:P(AB)=0.98×0.003,··················3分即,···························
·······5分故该居民可以确诊为疫情患者的概率为14.7%.······························6分(2)设方案一中每组的检测次数为X,则X的取值为1,6,·········
··········7分P(X=1)=(1﹣0.02)5=0.985=0.904,P(X=6)=1﹣0.985=0.096,·················································8分所以X的分布列为X16P0.9040.096所以E(X)=1×
0.904+6×0.096=1.48,······································9分即方案一检测的总次数的期望为111.48=16.28,设方案二中每组的检测次数为Y,则Y的取值为1,12,P(Y=1)=(1﹣0.2)11=0.801;P(Y=12)
=1﹣0.801=0.199,···········10分所以Y的分布列为Y112P0.8010.199所以E(Y)=1×0.801+12×0.199=3.189,即方案二检测的总次数的期望为3.189×5=15.945,·······························
··········11分由16.28>15.945,则方案二的工作量更少.·································12分21.解(1)0fx在1,上恒成立,即min0fx,···························1分21ln2
2xfxax,2axafxxxx.······································2分①当1a时,0fx在1,上恒成立,则fx在1,上单调递增.【高二期末考试﹒数学卷参考答案第7页(共8页)】
10fxf,合乎题意;······································3分②当1a时,由0fx,得xa,列表如下:x1,aa,afx0fx单调递减极小值单调递增所以,函数fx在1,上的最小值为
fa,且fx在1,a上单调递减,10faf,不符合题意.····················5分综上所述,实数a的取值范围是,1···········6分(2)
21ln222xgxaxax,222axaxagxxaxx,··········7分gx有两个极值点1x、2x,220xxaxa在0,上有两个
不等的根1x、2x,设12xx,244000202aaaa,解得1a,······························8分由韦达定理得122x
xa,12xxa,此时,函数gx在10,x,2,x上单调递增,在12,xx上单调递减,221212121211lnln22222xxgxgxaxaxaxx22121212121
22lnln12ln12xxxxaxxaxxaaaa,212ln12aaaaeae,即212ln120aaaaeae,1a,即112ln120a
aeae,······················10分【高二期末考试﹒数学卷参考答案第8页(共8页)】设112ln12Faaaeae2222121112120aaaaFaaaaa,所以
,Fa在,1单调递减,又0Fe,由0FaFe,得ae,因此,原不等式解集为,1e.·······················································12
分22.解(1)因为cosx,siny,222xy,······················1分所以1C的极坐标方程为cossin40,······················2分因
为2C的普通方程为2211xy,·································3分即2220xyy,对应极坐标方程为2sin.························
·······5分(2)因为射线:(0,0)2l,则12,,,MN,···········6分则124,2sinsincos,············································7分所以211si
nsincos2OMON·········································8分221111sinsincos(1cos)sin22224111sin2cos2444=21sin24
44,又02,则32,444,所以当242,即38时,OMON取得最大值214.···········10分23.解(1)由m=1,则fx|x-1|,即求不等式|x-3|+|2x-1|>4的解集.··
·········1分当x≥3时,|x-3|+|2x-1|=3x-4>4恒成立;································2分当132x时,x+2>4,解得x>2,综合得23x;当x≤12时,4-3x>4,解得x<0,综合得x<0;所以不等
式的解集为{x|x<0或x>2}.············································5分(2)∵t<0,∴tfxftmtxmtmm····················6分tmmtxtm
≤tmmtxtm································8分=txm=ftx.所以ftx≥tfxftm.·················
············10分