【文档说明】安徽省芜湖市第一中学2024-2025学年高一上学期中考试数学试题答案.pdf,共(3)页,151.922 KB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-938c1861bb16337318f8b07f7ef97406.html
以下为本文档部分文字说明:
高一期中答案一、单选题题号12345678答案ADBDCCCB二、多选题题号91011答案BDADABD三、填空题12.513.)1(1)(2xxxf14.4812453a四、解答题15、(1)}65|{xxBA................(5分)(2
)“xA”是“xB”的充分不必要条件,即BA..............(6分)①当A时,则2121aaa..........................(8分)②当A时,则61212111aaaa,即27
2a..................(12分)综上:实数a的取值范围为27a.........................................(13分)16、(1)2m.............................(6分)(2)4)(xxf
在),0(上是增函数,且4)(xxf是偶函数,则|)(|)(xfxf,|)(||)12(|)()12(tftftftf..................(12分)即|||12|tt,则131t所以,t的取值范围为131
t.....................................(15分)17、(1),12ba即1)12()(2xaaxxf3)(xf,即0)1)(2(02)12(2axx
xaax...........(2分)又0a①当21a时,不等式的解集为;..........................(4分){#{QQABTYgEggCAAAAAAQgCAQXCC
gMQkgAAAYgGgFAAsAABCBFABAA=}#}②当21a时,不等式的解集为}12|{axx;..........................(6分)③当021a时,不等式的解集为}21|{xax...........................(8分)(
2)3)1(f,即31ba,且ba,都是正实数,则34)1111(3131)]1()[111(111baabbababa当且仅当21,23ba时,等号成立。所以111ba的最小值为34...............
.....................................(15分)18、(1)0,1ba..........................................(4分)(2)因为xxxxxf11)(2又因为)(21)(22x
mfxxxh,即2)1(2)1()1(21)(222xxmxxxxmxxxh令]310,2[],3,1[,1txxxt则,令22)(2mtttg.................(7分)①当2m时,函数)(tg在]310,2[是增函数842
)2()(minmgtg,则25m,不满足题意;.................(10分)②当310m时,函数)(tg在]310,2[是减函数823209100)310()(minmgtg
,则3077m,不满足题意;.................(13分)③当3102m时,822)()(22minmmmgtg,则6m,满足题意;.................(16分)综上:6m
............................................................................................................
......(17分)19、(1)]2,0[..............................................................(3分)(2)假设函数xxg11)(存在“跟随区间”],[ba,因为xxg11
)(的定义域为{#{QQABTYgEggCAAAAAAQgCAQXCCgMQkgAAAYgGgFAAsAABCBFABAA=}#}),0()0,(,即)0,(],[ba或)0(],[,ba又因为xxg11)(在],
[ba上是增函数,则bbgaag)()(所以ba,是方程xxg)(的两不等根,即ba,是方程012xx的两不等根又因为方程012xx在实数范围内无解的,故假设不正确,原命题成立............................................
........(8分)(3)因为xaaaaxaxaaxh2222211)()(,定义域为),0()0,(,即)0,(],[nm或)0(],[,nm又因为)(xh在],[nm上是增函数,则nnhmmh4)(
4)(所以nm,是方程xxh4)(的两不等根.......................................(10分)即nm,是方程01)(4222xaaxa的两不等根则0,即350
16)(222aaaaa或,22241,414amnaaaaanm.......................................(13分)又因为mn,则2222221524111
6)1(4)(aaaaaamnnmmn1516)1511(15412a...................(16分)所以当15a时,mn取得最大值,最大值为1515........................................(17分){#{
QQABTYgEggCAAAAAAQgCAQXCCgMQkgAAAYgGgFAAsAABCBFABAA=}#}