【文档说明】四川省南充市2022-2023学年高三上学期12月高考适应性考试(一诊) 数学(文) 答案.pdf,共(7)页,220.188 KB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-712ea5f020e6342fcf3a717e60cb5b89.html
以下为本文档部分文字说明:
高三文科数学(一诊)参考答案第1页(共6页)南充市高2023届高考适应性考试(一诊)文科数学参考答案一.选择题:本题共12小题,每小题5分,共60分.123456789101112BCBAADDCCBAB二.填空题:本题共4小题,每小题5分,共20
分.13.3514.22136yx15.5216.31,3+1三.解答题17.17..解:(1)因为3cossinmAA,,11n,,//mn.所以sin3cosAA,....
......................................................................................................2分可得tan3A,又(0,)A....................
.......................................................................4分所以23A.................................
.............................................................................................6分(2)si
nsin0aBcA由正弦定理sinsinsinabcABC可得abca............................................................................................................
.......................8分则bc,又26a,23A.由余弦定理2222cosabcbcA,得22bc..................................................10分所以2113sin(22)23222AB
CSbcA.........................................................12分18.(1)调整前y关于x的解析式为0,350035000.03,3500,50004550000.1,5000,80
00xyxxxx;.........3分调整后y关于x的解析式为0,500050000.03,5000,8000xyxx;........................6分(2)由频率分
布表可知,从收入在3000,5000及5000,7000的人群中抽取7人,高三文科数学(一诊)参考答案第2页(共6页)其中在3000,5000元的人群中抽取人数为3人,分别记为A,B,C.5000,7000的人群中抽取4人,分别记为1,2,3,
4.............................................8分按分层抽样从7人中选2人的所有组合有:1A,2A,3A,4A,1B,2B,3B,4B,1C,2C,3C,4C,12,13,14,23,24,34,AB,
AC,BC.共有选法21种;.........................................................................................
....................9分选中的2人都在3000,5000元的人有:AB,AC,BC.共有选法3种...............11分则17321=P......................................................
..............................................................12分19.(1)取AD中点O,连接,OCOE,易得OEAD,OCAD.在COE中,由已知322,2,2262CEOCABOE.22
2.OCOECEOEOC又OEAD,OCADO......................................................................................................
...........3分则OEABCD平面........................................................................................................4分又OEADE平面故EADAB
CD平面平面得证.....................................................................................6分(2)由F是棱EB的中点,令OB的中点为K,连接FK.则//FKEO,FK
ABCD平面.....................................................................................8分连接CK,则FCK为
CF与平面ABCD所成的角由题意,在CFK中FK=62,CK=1,...................................................................10分故CF与平面ABCD所成角的正切值为
62..............................................................12分20.(1)根据抛物线定义可知342p得2p.........................................................
....................................................................2分所以抛物线的方程为24yx.....................................
..................................................4分(2)设11,Axy,22,Bxy设直线:lxtym,...........................................................
.............................................6分代入24yx,高三文科数学(一诊)参考答案第3页(共6页)得2440ytym∴1212044yytyym........................
............................................................................................7分又由AB为直径的圆
过原点O,则0OAOB12120xxyy.221212044yyyy,由于120yy,得1216yy.......................................................
..........8分即4m...........................................................................................................................
.......9分故直线l的方程为4xty所以直线l恒过定点4,0..........................................................................
.........................10分不妨设120,0yy,则122121211113(34)212832222ABFBOFyyyyyyyss..................11分当且
仅当1234yy时,等号成立.....................................................................................12分21.(1)解:2ln10,2axfxxxxxa
R当1a时,2ln102xfxxxxx因为ln0fxxxx,112f,11f............................................
...2分所以fx在(1,1)f处的切线方程为:1(1)2yx.即2210xy..............................................................................................
........4分(2)由2ln10,2axfxxxxxaR得ln0fxxaxx..............................................................................
..........5分因为函数fx有两个不同的极值点1x,2x.所以ln0fxxax在(0,)有两个不同的变号零点1x,2x.不妨设120xx.由于1122ln0ln0xax
xax,得2211ln()xaxxx,则2121()10lnxxxax...............................7分高三文科数学(一诊)参考答案第4页(共6页)要证:1221xxa只需证:2211221()lnxx
xxxx只需证:211221lnxxxxxx只需证:2212111212lnxxxxxxxxxx...............................................................................9分
令21xtx,则1t,只需证:12lnttt..............................................................10分构造函数1()2lnhtttt,(1)t.因为22221(1)()10thtttt
,..........................................................................11分所以()ht在(1,)单调递减因为1t,所以()(1)0hth.故原不等式成立.................
.....................................................................................12分22.解:(1)因为曲线C满足参数方程为=
2cos=2sinxy(为参数,,0)所以曲线C的直角坐标方程为:224xy,(0)y...........................................................3分因为直线l的极坐标方程为c
ossin0m.由cossinxy得直线l直角坐标方程为0xym............................................................
..........................5分(2)方法一:因为直线l与曲线C交于A,B两点,且2OAOB所以1cos2OAOBAOBOAOB.........
.......................................................................................7分记O到l的距离为d.则2sin32md
.......................................................................................................................8分高三文科数学
(一诊)参考答案第5页(共6页)又0m.所以6m................................................................................
.........................................10分方法二:已知(0,0)O,设11(,)Axy,22(,)Bxy.则2121212121212()()2()2OAOBxxyyxxmxmxxxmxxm......
..............6分2240xyxym得222240mxmx......................................................................
..................................7分122120042xxmmxx所以222(4)2OAOBmmm..........................................
............................................8分所以6m或6m(舍去)...............................................................................
...........9分综上:6m.......................................................................................
................................10分23解:(1)122fxxxx12123212232xxxxxxx或或...............................................
.................................3分1(,)4x....................................................................................
..................................5分(2)3112122132xfxxxxxx...............................
.............................6分所以函数fx的最大值为3M.已知正实数a,b,c满足1413abcM...................................................................
.8分由柯西不等式得高三文科数学(一诊)参考答案第6页(共6页)2222222111111111()()()()()()(2)216abcabcabcabcabc.........
......................................................................................................................
.....................9分当且仅当2111abcabc时,即2abc时,又41abc.所以当且仅当14a,14b,18c时,等号成立....................................
..........................10分获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com