【文档说明】四川省南充市2022-2023学年高三上学期12月高考适应性考试(一诊) 数学(理) 答案.pdf,共(7)页,226.011 KB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-157381aa801ada5e045a6543debee098.html
以下为本文档部分文字说明:
高三理科数学(一诊)参考答案第1页(共6页)南充市高2023届高考适应性考试(一诊)理科数学参考答案一.选择题:本题共12小题,每小题5分,共60分.123456789101112BCAADCACDCBA二.填空题:本题共4小题,每小题5分,共20分.13.3514.115.521
6.31,3+1三.解答题17..解:(1)因为3cossinmAA,,11n,,//mn.所以sin3cosAA,.....................................
.....................................................................2分可得tan3A,又(0,)A..................................
.........................................................4分所以23A.....................................
.........................................................................................6分(2)sinsin0aBcA由正弦定理sinsinsinabcABC可得abca...
...............................................................................................................................
.8分则bc,又26a,23A.由余弦定理2222cosabcbcA,得22bc..................................................10分所以2113sin(22)23222ABCSbcA...............
..........................................12分18.解:(1)由频率分布直方图表,10(0.00250.00500.01000.01500.0200.0250)1m得0.0225m.....................
..................................................................................................2分5304050452010354
5556575859565200200200200200200200x所以这200人得分的平均值65x.............................................................................
.......5分(2)Y的所有取值为0,100,200,300,............................................................................6分高三理科数学(
一诊)参考答案第2页(共6页)003311232233303211(0)()()3327216(100)()()33272112(200)()()3327218(300)()()3327PYCPYCPYCPYC..........
..........................................................10分Y0100200300P1272949827.............................................
..................................................................................................11分1241()0100200300200279932EY
............................................12分19.(1)取AD中点O,连接,OCOE,易得OEAD,OCAD.在COE中,由已知33,3,2262CEOCABOE.222.OCOECEOEOC
又OEAD,OCADO.................................................................................................................3分则OEABCD平面..
......................................................................................................4分又OEADE
平面故EADABCD平面平面得证.....................................................................................6分(2)以O为原点,分别以射线,,OCOAOE为,,xyz轴正半轴
.建立如图所示空间直角坐标系.则(0,2,0),(3,2,0),(0,2,0),(0,0,6).ABDE则(3,2,6),(0,2,6),(0,22,0).EBAEAD在棱EB上的点F满足13EFEB则1(3,2,6)3EF
,32226(,,)333AFAEEF.设平面ADF的一个法向量为(,,)mxyz高三理科数学(一诊)参考答案第3页(共6页)则0,0,mAFmAD令1z,得平面ADF的一个法向量(22,0
,1).m..............................................10分又平面EAD的一个法向量(1,0,0)n整理得22cos,=3mn故二面角EADF的余弦值为223........
.............................................................12分20.(1)解:2ln10,2axfxxxxxaR当1a时,2ln102xfxxxxx因为ln0fxxxx,1
12f,11f..................................................2分所以fx在(1,1)f处的切线方程为:1(1)2yx.即22
10xy......................................................................................................4分(
2)由2ln10,2axfxxxxxaR得ln0fxxaxx................................................................................
........5分因为函数fx有两个不同的极值点1x,2x.所以ln0fxxax在(0,)有两个不同的变号零点1x,2x.不妨设120xx.由于1122ln0ln0xaxxax,得2211ln()xaxxx,则2121()10lnx
xxax...............................7分要证:1221xxa只需证:2211221()lnxxxxxx只需证:211221lnxxxxxx只需证:2212111212lnxxxxxx
xxxx...............................................................................9分高三理科数学(一诊)参考答案第4页(共6页)令21
xtx,则1t,只需证:12lnttt..................................................................10分构造函数1()2lnhtttt,(1)t.因为22221(1)
()10thtttt,...........................................................................11分所以()ht在(1,)单调递减因为1t,所以()(1)0hth
.故原不等式成立........................................................................................................12分21.解:(1)因为点1,2Q在焦点为F的抛物线2:20C
ypxp上所以2221p.........................................................................................................................
....2分得2p,所以抛物线的方程为24yx.....................................................................................................4分(2)设00,Pxy,
1,Mm,1,Nn,则直线PM的方程为00(1)1ymymxx,即0000()(1)0ymxxymxy................................................................................
........5分因为直线PM与圆221xy相切所以0022001()(1)mxyymx所以2220000(1)2(1)(1)0xmyxmx.........................
....................................................6分同理直线PN与圆221xy相切得:2220000(1)2(1)(1)0xnyxnx.构造方程:2220000(1)2(1)(1)0xtyxt
x,则1tm,2tn.02000020020020(1)002(1)211(1)1011xyxymnxxxxmnxx.........................
..............................................................8分高三理科数学(一诊)参考答案第5页(共6页)显然01x22000002000000(2)4(1)(1)4111
11()4112211PMNyxxxxSmnxxmnmnxxxx...................................................................
.................................................................................10分令01x,则01x,022(2)(64)44(
4)(6)8045PMNS.........................11分当且仅当42时,即03x,取最小值.所以PMNS的最小值为45........................................
............................................................12分22.解:(1)因为曲线C满足参数方程为=2cos=2sinxy(为参数,,0)所以曲线C的直角坐标方程为:224xy
(0)y...........................................................3分因为直线l的极坐标方程为cossin0m.由cossinxy得直线l直角坐标方程为0xym..............
........................................................................5分(2)方法一:因为直线l与曲线C交于A,B两点,且2OAOB所以1cos2OAOBAOBOAOB
................................................................................................7分记O到l的距离为d.则2sin32m
d.......................................................................................................................8分又0m
.所以6m........................................................................................................................
.10分方法二:已知(0,0)O,设11(,)Axy,22(,)Bxy.则2121212121212()()2()2OAOBxxyyxxmxmxxxmxxm....................6分高三理科数学(一诊)参考答
案第6页(共6页)2240xyxym得222240mxmx.......................................................................................
.................7分122120042xxmmxx所以222(4)2OAOBmmm............................................................
..........................8分所以6m或6m(舍去).................................................................................
.........9分综上:6m..............................................................................................
.........................10分23.解:(1)122fxxxx12123212232xxxxxxx或或..............................................
..................................3分1(,)4x....................................................................................................
..................5分(2)3112122132xfxxxxxx............................................................6分所以函数
fx的最大值为3M.已知正实数a,b,c满足1413abcM....................................................................8分由柯西不等式得2222222111111111(
)()()()()()(2)216abcabcabcabcabc.......................................
............................................................................................................9分当且仅当2111abcabc时
,即2abc时,又41abc.所以当且仅当14a,14b,18c时,等号成立..............................................................10分获得更多资源请扫码加入享学资源网微信公众号
www.xiangxue100.com