江苏省连云港市东海县2020-2021学年高二上学期期中考试数学评分标准及答案

PDF
  • 阅读 5 次
  • 下载 0 次
  • 页数 5 页
  • 大小 283.117 KB
  • 2024-09-10 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
江苏省连云港市东海县2020-2021学年高二上学期期中考试数学评分标准及答案
可在后台配置第一页与第二页中间广告代码
江苏省连云港市东海县2020-2021学年高二上学期期中考试数学评分标准及答案
可在后台配置第二页与第三页中间广告代码
江苏省连云港市东海县2020-2021学年高二上学期期中考试数学评分标准及答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的2 已有5人购买 付费阅读2.40 元
/ 5
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】江苏省连云港市东海县2020-2021学年高二上学期期中考试数学评分标准及答案.pdf,共(5)页,283.117 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-348326b42a7204b48b0f773d76f0a898.html

以下为本文档部分文字说明:

12020~2021学年第一学期期中考试高二数学参考答案及评分标准一、单项选择题:共8小题,每小题5分,共40分.1.D2.C3.B4.A5.A6.D7.D8.D二、多项选择题:共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分

,有选错的得0分.9.AC10.AB11.ACD12.BCD三、填空题:共4小题,每小题5分,共20分.13.614.33,3215.23n16.36四、解答题:共6小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分

)解:(1)由8ababab≥8+2,整理得280abab≥,(4)(2)0abab≥,所以ab≥4,故ab最小值为16,当4ab时取得最小.·····················6分(2)由8abab,得81bab,由0a,0b得1b.···

··························8分所以89222(1)336211babbbbb≥,·····························10分当且仅当92(1)1bb,

即3212b时,2ab的最小值为362.·······························································12分18.(本小题满分12分)解:(1

)设等比数列na的公比为q,又11a则21aaqq,2231aaqq,·······················································2分由于22a是3a和14a的等差中

项,得23144aaa,即244qq,解得2q.·································4分2所以,1111122nnnnaaq········································

················6分(2)21224nnnbnan012112324446424nnnSbbbbn212221441246214442143nnnnnnnn

·······························································································

····12分19.(本小题满分12分)解:(1)依题意得()()0gxfx对任意[3,3]x恒成立,即26kxx对任意[3,3]x恒成立,则2max(6),3,3kxxx≥,当3x时,2max(6)27xx,所以27k.···

············································································5分(2)因存在1x,2[3,3]x,使12()()fxgx成立则有mi

nmax[()][()]fxgx,·····································································8分因2()24fxxxk22(1)2xk,2()2gxxx2(1)1x,[3,3]x

所以minmax()(1),g()(3)fxfxg················································10分于是1(3)fg,即222(1)4(1)(3)2(3)k,解得17k

.··················································································12分20.(本小题满分12分)解:(1)直线l斜率不为0,(1,0)F:1lxty

设直线112212(,),(,).A0,0AxyBxyxyy设点在轴上方221,4404,xtyytyyx由得12124,4yytyy··································

···································3分31122122(1,y)2(1,)2AFFBxxyyy由1211224,8,2,4,yytytyyyt代入124yy,因10y,所以0t,解得122

t,22220ABxy所在直线方程为·············································6分(2)ABNNNxy设中点为(,),212+==2,=212NNyyytxt

2(21,2)Ntt所以AB中垂线2:2(21)lyttxt2(23,0)Dt2223122DFtt···················································

··············9分222121=()()ABxxyy222121=()()tytyyy2212121()4tyyyy2211616tt244t22442(22ABtDFt定值)··············

···················································12分21.(本小题满分10分)解:选择条件①:由114(2)nnaan≥,得数列21na和2na成公差为4的等差数列

,··········································2分则有21114(1)44naanna,2224(1)44naanna,································

·····························4分当2n时,314aa,又123,,aaa成等差数列,所以其公差为2,则有212aa,所以22214(1)4442naannana,···························

············6分则当n为奇数时,122nana;当n为偶数时,122nana,4所以122nana,()nN.·····························································

8分则12(1)nnaan≥,所以数列na是等差数列.··································10分选择条件②:因为21124(3)nnnnnaaaaan≥,所以2112()()2(3)nnnnnnnaaaaaaan≥,

又114(2)nnaan≥,所以24(3)nnaan≥,24()nnaan≥1,所以112(3)nnnaaan≥,·····························································6分所以数列na从第二项

开始等差,设公差为d,因4242aad,所以322aad,又313221()()4aaaaaa,所以212aa,综上有数列na是公差为2的等差数列.···········

····································10分选择条件③:因为114(2)nnaan≥,所以24()nnaan≥1,又361nnaan(≥),两式相减得3221nnaan(≥),所以数列na从第三项开始等差.·······

················································6分将3n带入114nnaa得424aa,因为432aa,所以42433232()()2()4aaaaaaaa

,所以322aa,同理212aa.综上有数列na是公差为2的等差数列.···············································10分22.(本小题满分12分)解(1)222222ABaa设焦距为2c,22122ceca离心

率2221bac5所以,所求的椭圆方程为2212xy·····················································3分(2)设直线MN方程为1xmy,设11Mxy(

,),22Nxy(,)由221,21,xyxmy22(2)210mymy得12122221+=,=22myyyymm··········································

·················5分11(2)2yAMyxx直线方程是,22(2)2yBNyxx直线方程是1122(2),2(2),2yyxxyyxx由·····································

···································7分21211221212121(2)(12)(12)2=2(2)(12)(12)yxymymyyyxxyxymymyyy可得212212112

12()(12)()(12)2(2)221(12)(2)()(12)2mmymmmymmmmymym21212121(322)(12)(2)(12)(2)[(322)(12)(2)](12)[(12)(2)](12)mmymmymmymmy

2121[(322)(12)(2)](12)(12)(2)mmymmy221212[(12)(2)](12)(12)(2)(12)322mmymmy········

···········································11分2=3+22=22xxx,解得=2.AMBNx因此直线与直线的交点P落在定直线上·················

··················12分

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?