中学生标准学术能力诊断性测试2023-2024学年高三上学期1月测试 数学 PDF版含答案(可编辑)

PDF
  • 阅读 15 次
  • 下载 0 次
  • 页数 12 页
  • 大小 885.582 KB
  • 2024-11-24 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【管理员店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
中学生标准学术能力诊断性测试2023-2024学年高三上学期1月测试 数学 PDF版含答案(可编辑)
可在后台配置第一页与第二页中间广告代码
中学生标准学术能力诊断性测试2023-2024学年高三上学期1月测试 数学 PDF版含答案(可编辑)
可在后台配置第二页与第三页中间广告代码
中学生标准学术能力诊断性测试2023-2024学年高三上学期1月测试 数学 PDF版含答案(可编辑)
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的4 已有15人购买 付费阅读2.40 元
/ 12
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】中学生标准学术能力诊断性测试2023-2024学年高三上学期1月测试 数学 PDF版含答案(可编辑).pdf,共(12)页,885.582 KB,由管理员店铺上传

转载请保留链接:https://www.doc5u.com/view-2b9c18c46fc472ad50fb40498b69f858.html

以下为本文档部分文字说明:

第1页共4页第2页共4页中学生标准学术能力诊断性测试2024年1月测试数学试卷本试卷共150分,考试时间120分钟。一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知mR,集合2,1

,2,AmBaaA=−=,若CAB=,且C的所有元素和为12,则m=A.3−B.0C.1D.22.已知数列na满足1111,2nnnnnaaaaa++=−=,则na=A.1221n−+B.112n−C.221n+D.12

1n−3.复数z满足()2i1iz+=−(i为虚数单位),则z的共轭复数的虚部是A.3−B.1C.iD.i−4.在直三棱柱111ABCABC−中,所有棱长均为1,则点1A到平面1ABC的距离为A.217B.105C.216D.1045.设()201212nnn

xaaxaxax+=++++,若56aa=,则n=A.6B.7C.8D.96.若不等式22458174xxxx−++−+的解集为,ab,则ab+的值是A.5B.42C.6D.77.已知32ee,ln2,155ln

52abc===−,则A.abcB.bcaC.acbD.bac8.已知3311,0,344xyxyxy+−−=,则13xy+的最大值是A.15B.18C.20D.24二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出

的四个选项中,有多项符合题目要求.全部选对得5分,部分选对但不全得2分,有错选的得0分.9.设,,为互不重合的平面,,mn为互不重合的直线,则下列命题为真命题的是A.若,,则C.若,,mnmn,则B.若,mm=⊥,则,⊥⊥D.若,⊥⊥,则1

0.已知点P为双曲线22:14xCy−=上的任意一点,过点P作渐近线的垂线,垂足分别为,EF,则A.455PEPF+=C.1225PEPF=−B.45PEPF=D.PEFS的最大值为82511.直线1:0laxbyc++=和2:0l

bxcya++=将圆()()22:111Cxy−+−=分成长度相等的四段弧,则()()()222111abc−+−+−的取值可以是A.43B.2C.83D.312.已知()sin2sin22sin22+=+,且kk+Z,则()t

an2tan+++3tan的值可能为A.6−B.5−C.52D.8三、填空题:本题共4小题,每小题5分,共20分.13.设函数()fx的定义域为R,()fx为偶函数,()21fx+−为奇函数,当2,4x时,()fx=

2logaxb+,若()()064ff+=,则2ab+=.14.已知12,FF是椭圆()2222:10xyCabab+=的左、右焦点,P是C上一点,线段2PF的中垂线l过点1F,与椭圆C相交于,AB两点,且95ABa=,则椭圆C的离

心率为.15.已知函数()gx的图象与函数()exfxx=−的图象关于原点对称,动直线()0xaa=与函数()(),fxgx的图象分别交于点,AB,函数()fx的图象在A处的切线1l与函数()gx的图象在B处的切线2l相交于点C,则ABC面积的最小值是.16.对任意的xR,不等式()()

()2222714613817xxmxxxx−+−+−+恒成立,则实数m的取值范围为.{#{QQABDYKAogiAABAAABgCAQFKCEOQkAGCCAoOxAAEsAAAgRNABCA=}#}第3页

共4页第4页共4页四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)数列na的前n项和为1,1nSa=,当2n时,212nnnSaS=−.(1)求证:数列1nS是等差数列,并求nS的表达式;(2)设221nnnSbn=+,数

列nb的前n项和为nT,不等式23nTmmn−+对所有的n*N恒成立,求正整数m的最小值.18.(12分)如图所示,在ABC中,1,ABD=是BC上的点,12BADDAC=.(1)若2BAC=,求证:213ADAC−=;(2)若14BDDC=,求A

BC面积的最大值.19.(12分)如图所示,一只蚂蚁从正方体1111ABCDABCD−的顶点1A出发沿棱爬行,记蚂蚁从一个顶点到另一个顶点为一次爬行,每次爬行的方向是随机的,蚂蚁沿正方体上、下底面上的棱爬行的概率为16,沿正方体的侧棱爬行

的概率为23.(1)若蚂蚁爬行n次,求蚂蚁在下底面顶点的概率;(2)若蚂蚁爬行5次,记它在顶点C出现的次数为X,求X的分布列与数学期望.20.(12分)如图所示,已知ABC是以BC为斜边的等腰直角三角形,点M是边AB的中点,点N在边BC上,且3

BNNC=.以MN为折痕将BMN折起,使点B到达点D的位置,且平面DMC⊥平面ABC,连接,DADC.(1)若E是线段DM的中点,求证:NE平面DAC;(2)求二面角DACB−−的余弦值.21.(12分)如图所示,已知抛物线()21,0,1yxM=−,A,B是抛物线与x轴的交点,过点M作

斜率不为零的直线l与抛物线交于C,D两点,与x轴交于点Q,直线AC与直线BD交于点P.(1)求CMDMCD的取值范围;(2)问在平面内是否存在一定点T,使得TPTQ为定值?若存在,求出点T的坐标;若不存在,请说明理由.22.(12分)已知函数()2

1lnxfxxax−=+−有两个零点()1212,xxxx.(1)求实数a的取值范围;(2)求证:121xx;(3)求证:22221214xxaxx−−−.(第19题图)(第20题图)(第21题图)(第18题图){#{QQABDYKAogiAA

BAAABgCAQFKCEOQkAGCCAoOxAAEsAAAgRNABCA=}#}第1页共9页中学生标准学术能力诊断性测试2024年1月测试数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目

要求的.12345678ADBACCAC二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对但不全的得2分,有错选的得0分.9101112ABBCDCDACD三、填空题:本题共4小题,每小题5分,共20分

.13.414.51315.216.12−,四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(1)当2n时,数列na的前n项和为nS,满足212nnnSaS

=−,即()22111111222nnnnnnnnnSSSSSSSSS−−−=−−=−−+,整理可得112nnnnSSSS−−=−······················································

··················1分11S=,则21122SSSS=−,即2221SS=−,可得213S=·······························2分由23232SSSS=−,即332133SS=−,可得31,,5S=以此类推可知,对任意的,0nnS*N,在等式112

nnnnSSSS−−=−两边同时除以1nnSS−可得1112nnSS−−=·······················4分{#{QQABDYKAogiAABAAABgCAQFKCEOQkAGCCAoOxAAEsAAAgRNABCA=}#}第2页共9页所以数列1nS为等差

数列,且其首项为111S=,公差为2·································5分()112121nnnS=+−=−,因此,121nSn=−·······················

·····················6分(2)解:()()211111112142121482121nnnSbnnnnn==+=+−+−+−+,1114821nnTn=+−+

············································································8分不等式23nTmmn−+对所有的n*N恒成立,则22303mm−+,即9576m+或9576m−·············

························································9分因此,满足条件的正整数m的最小值为3··································

····················10分18.(12分)(1)证明:由1,22BACBADDAC==,知,63BADDAC==,111,sinsin26232ABCABDACDSSSABADADACABAC=++=,即32ADADACA

C+=,两边同除以ADAC,得213ADAC−=······················································5分(2)设BAD=,则2DAC=,ABD中,由正弦

定理,得sinsinABBDBDA=①,ACD中,由正弦定理,得sinsin2ACDCCDA=②,②①,结合sinsin,4BDACDADCBD==,得2cosAC=····················7分321sin33sin4sinsin3

3tan4tansin2coscosABCSABAC−====−{#{QQABDYKAogiAABAAABgCAQFKCEOQkAGCCAoOxAAEsAAAgRNABCA=}#}第3页共9页2322tan3tantan3tan4

tan1tan1tan−=−=++····································9分设()tan0,3t=,即求函数()323,0,31ttytt−=+的最大

值,()()()()()()()2222322222332333313211tttttttytt−−++−+−−==++,()20,233t−时,0y,函数单调递增;()2233,3t−时,0y,函数单调递减,当2233t

=−时,函数有最大值,max639y=−,ABC面积的最大值为639−····························································12分19.(12分)(1)记蚂

蚁爬行n次在底面ABCD的概率为nP,由题意可得,()11212,1333nnnPPPP+==+−····················································3分11

111,2322nnnPPP+−=−−−是等比数列,首项为16,公比为13−,11111111,263263nnnnPP−−−=−=+−··············

··········································5分(2)X=0,1,2,X=2时,蚂蚁第3次、第5次都在C处,()11212112122111112222663636636336666

18PX==++++=········································································

······································7分X=1时,蚂蚁第3次在C处或第5次在C处,设蚂蚁第3次在C处的概率为1P,1112121121151521122266363663666663318P

=++++=·····················································································

·························8分设蚂蚁第5次在C处的概率为2P,{#{QQABDYKAogiAABAAABgCAQFKCEOQkAGCCAoOxAAEsAAAgRNABCA=}#}第4页共9页设蚂蚁不过点C且

第3次在1D的概率为3P,设蚂蚁不过点C且第3次在1B的概率为4P,设蚂蚁不过点C且第3次在A的概率为5P,由对称性知,34PP=,3111212134366636354P=+=,512122211663633327P=+=,得2351211

7222636654PPP=+=···················································11分()125127PXPP==+=,()()()41011254PXPXPX==−

=−==,X的分布列为:X012P4154527118X的数学期望()()()()800112227EXPXPXPX==+=+==············12分20.(12分)(1)过点E作AM的平行线交AD于点F,过点N作AB的平行线交AC于点G,

连接FG.因为点E是线段DM的中点,3BNNC=,12EFNGAM==,且EFNG,四边形EFGN是平行四边形.由,NEFGNE平面DAC,FG平面DAC,NE平面DAC·························································

·····························5分(2)解法1:以点A为原点,AB,AC所在的直线为x轴、y轴,过点A垂直于平面ABC的直线为z轴,建立空间直角坐标系··································

···································6分设2ABAC==,则()()130,0,0,,1,0,0,,,022AMN,设(),,,Dxyz,{#{QQABDYKAogiA

ABAAABgCAQFKCEOQkAGCCAoOxAAEsAAAgRNABCA=}#}第5页共9页因为平面DMC⊥平面ABC,所以点D在平面ABC上的射影落在直线CM上,12yx+=①,由题意可知,()22231,2

,112DMDNxyz==−++=②,222139222xyz−+−+=③,由①②③解得,8221182211,,,,,777777xyzD==−=−···········

···············8分82211816211,,,,,777777ADCD=−=−,设平面ACD的法向量为(),,nxyz=,00ADnCDn==,即411048110xyzxyz−+=−+=,取11,0,4

xyz===−······················11分取平面ABC的法向量()0,0,1m=.设二面角DACB−−的平面角为,则43coscos,9mnmnmn===,所以,二面角DACB−−的余弦值为439···················

································12分解法2:如图,过点B作直线MN的垂线交于点I,交直线CM于点H.由题意知,点D在底面ABC上的射影在直线BI上且在直线MC上,所以点H即点D在底面上的射影

,即DH⊥平面ABC·····················································································6分设2AB=,则31,2,24BMB

NMBN===,由余弦定理,得102MN=,()1031010cos,sin,cos101010BMNBMNMIBMBMN=−==−=,{#{QQABDYKAogiAABAAABgCAQFKCEOQkAGCCAoOxAAEsAAAgRNABCA=}#}第6页共9页()1053

102572coscos10510510IMHIMBHMB=−=+=,5cos7MIMHIMH==.过点H作AC的垂线交于点O,连接DO,由三垂线定理知,DOAC⊥,DOH是二面角DACB−−

的平面角········································································9分由AMCMHOCH=,解得228211,77HODHDMMH==−=,11tan4DHDOHHO==,得4

3cos9DOH=,所以,二面角DACB−−的余弦值为439··················································12分21.(12分)(1)设点()()1122,,,CxyDxy,设直线l的方程为()10yk

xk=+,代入抛物线21yx=−,得220xkx−−=(*),222122221211217221,28218CMDMkxkxkCDkkxxk+++===−++−+··········4分(2)()(

)2211221,1,,1,,0CxxDxxQk−−−,设(),Tmn,由(*)式,知1212,2xxkxx+==−·····························································

·5分直线AC的方程为()()111yxx=−+,直线BD的方程为()()211yxx=+−,解得()()121212122121212123,222xxxxxxxxxyxxxxxx+−−−−+===−+−+−+,所以点P的坐标为()1212212123,22xxxxxxx

x−−+−+−+···············································7分()12122121231,,,22xxxxTPmnTQmnxxxxk−−+=−−=−−−−+−+,()()1212

212123122xxxxTPTQmmnnxxkxx−−+=−−−+−−−+−+{#{QQABDYKAogiAABAAABgCAQFKCEOQkAGCCAoOxAAEsAAAgRNABCA=}#}第7页共9页()()12221212212121231222x

xxxxxmmnnxxkkxxxx−−++=−−−+−−+−+−+222121121222knmmnnxxkxx−=−−+++−+−+2218xxk−=+,22221282kmnmTPTQmnnkk−+−=++++++··········

·····································10分当10,,2mnTPTQ==为定值54,所以存在定点T的坐标为10,2·····················································

·············12分22.(12分)(1)()()32221ln2ln2xxxfxxxx−+−+=+=····················································1分又因为函

数()()321lngxxx=−+递增,且()10g=,()01fxx,()fx在()0,1递减,在)1,+递增······················································

······2分当()120fa=−,即2a时,2211111lnln0faaaaaaaa=+−−=+,()()()()222211111ln10aaaaafaaaaaaaaaaa−−−+−−=+−−+−−=,()fx在()

1,1,1,aa上各有一个零点·························································3分当2a时,()fx的最小值为()1f,且()120fa=−,()fx在()0,+内至多只有一个零点,综上,实数a的取值范围

是2a··································································4分(2)设()()1,1Fxfxfxx=−,{#{QQABDYKAogiAABAAAB

gCAQFKCEOQkAGCCAoOxAAEsAAAgRNABCA=}#}第8页共9页则()()()()22322111121lnxxFxfxfxxxxxx−−=+=−−+()()3323

21112ln221lnxxxxxxxxxxx+−=−−−=−−+当1x时,ln1xx−,()()()()33222112120xxxxxxxxx−−+−=+−=−++,()()()322111lnxxxxxxx−+−

+,()Fx在()1,+上递增,当1x时,()()10FxF=,即当1x时,()1fxfx······································································6分又因为函

数()fx有两个零点()1212,xxxx,由(1)知,122101,01xxx,()()1221fxfxfx=,又()fx在()0,1递减,121xx,即121xx················································

················································8分(3)设()()211lnxGxfxxaxxxx=−+−=−−,()()()232122212

1ln1ln21ln21xxxxxxxxGxxxxx−+++−−−+=−−==,()110G=,当1x时,()()()2121ln211xxGxxxxx−=+++−,显然()2ln2101xxxx+++−{#{QQABDYKAogiAABAAABgCAQ

FKCEOQkAGCCAoOxAAEsAAAgRNABCA=}#}第9页共9页()1Gx在()0,1递减,()1,+递增,()()1110GxG=,即()()11fxxahxx+−=,设()1hx的零点为()2343443,,4xxxxxxa−=−,由图象可知312

4xxxx,2214xxa−−··················································································10分设()22211ln1111lnxfxxaxx

xxxx−−+−=−=−−,设()211lnGxxx=−−,易得()20Gx恒成立,即()()2221fxxahxx+−=,设()2hx的零点为()222565665,,4x

xxxxxa−=−,由图象可知,1562xxxx,22221562xxxx,222214xxa−−,22221214xxaxx−−−·································

····································12分{#{QQABDYKAogiAABAAABgCAQFKCEOQkAGCCAoOxAAEsAAAgRNABCA=}#}获得更多资源请扫码加入享学资

源网微信公众号www.xiangxue100.com

管理员店铺
管理员店铺
管理员店铺
  • 文档 467379
  • 被下载 24
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?