【文档说明】四川省叙永第一中学校2024-2025学年高三上学期开学考试数学试题答案.docx,共(4)页,268.551 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-0ec51026b10838a8cf4435b3fc93ba54.html
以下为本文档部分文字说明:
2024年秋期高2022级高三开学考试数学试题参考答案:题号12345678910答案AABCDDCABCDACD题号11答案ACD12.3213.014.()e,+15.解:(1)由图象可知,()fx的最大值为2,最小值为2−,又0A
,故2A=,......2分周期453123T=−−=,2||=,0,则2=,.....................................4分从而()2sin(2)fxx
=+,代入点5,212,得5sin16+=,则5262k+=+,Zk,即23k=−+,Zk,.........................................
....6分又||2,则3=−.()2sin23fxx=−.............................................................
.....................................7分(2)将函数()fx的图象上所有点的横坐标变为原来的2倍,纵坐标不变,故可得2sin3yx=−;......................................
......................................................9分再将所得图象向左平移6个单位,得到函数()gx的图象故可得()2sin()6gxx=−;........................................
.................................................10分[,]6x−5[,]636x−−,3sin,162x−−,........................................
...12分2sin3,26x−−,()[3,2]gx−的值域为..........................................................13分16.解:(1)由
22cosabcB+=,根据正弦定理可得2sinsin2sincosABCB+=,.....2分则()2sinsin2sincosBCBCB++=,......................................................
.........................3分所以2sincos2cossinsin2sincosBCBCBCB++=,整理得()2cos1sin0CB+=,..............5分因为,BC均为三角形内角,所以(),0
,π,sin0BCB,...........................................6分因此1cos2C=−,所以2π3C=...........................................................
.......................7分(2)因为CD是角C的平分线,313,13ADDB==,所以在ACD和BCD△中,由正弦定理可得,,ππsinsinsinsin33ADCDBDCDAB==,.........................9分因此sin3sinBADA
BD==,即sin3sinBA=,所以3ba=,..............................................................10分又由余弦定理可得2222coscababC=+−,即2222(413)93aaa=++,....
............................12分解得4a=,所以12b=.................................................................................................
......13分又ABCACDBCDSSS=+△△△,即111sinsinsin222abACBbCDACDaCDBCD=+,............14分即4816CD=,所以3CD=.................................
................................................................15分17.解:(1)数列{}na是等差数列,依题知:12111336(3)()(7)adadadad+=+=++,解得111ad==或120ad=
=(舍)..................................................3分1(1)naandn=+−=..........................................................
.................................................5分1222nnbbnba+++=,①当2n…时,1212(1)2(1)nnbbnba−−+++−=,②①−②得22(1)2nn
nnbaa−=−=,2nbn=.................................................................................7分又当1n=时,112ba==满足上式,2nbn=;.......
..............................................................8分证明:(2)由(1)知22nnnbcan==.当1n=时,110423211c==−+;当2n…时,2
22222211111()()42222ncnnnnnn===−−−+−+............................................................11分1222222
222111111222222222ncccnnn++++−++−=+−−+−+−+104321n=−+................................................................................
..........................................14分综上,12104321ncccn+++−+„.........................................
.................................................15分18.解:(1)由3()()eexxfxgxxx−+=+,2()()[e()e]xxfxgxxmx−−=−+可得...........
............2分32ee[e()e]1()ee22xxxxxxxxxmxfxxmx−−−++−+==−,...............................................................3分由于()fx为偶函数,故()11
()eeee22xxxxfxfxxmxxmx−−=−−=−+,进而可得()1ee102xxxxm−+−=,由于eexxxx−+不恒为0,故1102m−=,解得2m=,故e(e)xxxfxx−=−.......................................
...5分(2)令2()()[e(2)e]0xxfxgxxx−−=−+=,当0x时,则22e2xx=+,令()22=e2xhxx−−,则()2e2xhxx=−,令()()()2e2,0xmxhxxx=−=则()22e20x
mx=−,故()mx在(0,+∞)单调递增,故()()()01mxhxh==,故ℎ(𝑥)在(0,+∞)单调递增,又()11e20,01024hh=−−=−,故存在唯一的0x,且0102x,得证,..................
.............10分(3)3()eexxgxxx−−=+由()gxax可得当0x时,2eexxax−−+,当0x时,2eexxax−−+,.....................................12分令()2=eexxpxx−−+,则()()()
222=e2ee21e1e0xxxxxpxxxxxx−−−−−−+−=−−+=−−,...............................................14分故()px在(),0−单调递减,在(0,+∞)
单调递减,故0x时,()()01pxp=,此时()apx,故1a,................................................................1
5分当0x时,()()01pxp=,此时()apx,故1a,................................................................16分要使对任意的Rx,都有()gx
ax成立,故11a,故1a=,.................................................17分19.解:(1)1,2,3,5(符合要求即可):................................................
.................................3分(2)假设可以划分,1,abcdab−=和cd一定是一个奇数一个偶数,,,,abcd中至多两个偶数.则对于1,2,3,4,5,6,7,8的一种符合要求的划
分1111,,,abcd和2222,,,,abcd每个四元子集中均有两个偶数.若两个集合分别为112,4,,cd和226,8,,,cd则2247cd=或49,不存在22,cd使得226,8,,cd符合要求:若两个集合分别为112,6
,,cd和224,8,,,cd则1111cd=或13,不存在11,cd使得112,6,,cd符合要求:若两个集合分别为112,8,,cd和224,6,,,cd则2223cd=或25,不存在22,cd使得224,6,,cd符合
要求;综上所述,1,2,3,4,5,6,7,8不能划分为两个不相交的“有趣的”四元子集,..............................11分(3)假设1,2,,4n可以划分为n个两两不相交的“
有趣的”四元子集12,,,nSSS.每个子集中至多两个偶数,又1,2,,4n中恰有2n个偶数,每个子集中均有两个偶数,对于1in,可设,,,,iiiiiSabcd=其中,iiab是偶数,,iicd为奇数,再由奇偶性,只能是1iiiiabcd−=.()()1111,iii
iiiiiabcdcdcd=+++且11221122,,,,,,2,4,4,,,,,,,1,3,,41nnnnabababncdcdcdn==−.()()()()()()11221122244111111244,nnnnnabababcdcdcdn=++++++
=.矛盾.1,2,,4n不能划分为n个两两不相交的“有趣的”四元子集................................................17分