【文档说明】2021-2022高中数学人教版必修5作业:2.5等比数列的前n项和 (系列一)含解析.docx,共(5)页,35.113 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-f1f9474486e375b52343cfadf1ef21e7.html
以下为本文档部分文字说明:
课时作业13等比数列的前n项和时间:45分钟分值:100分A学习达标一、选择题1.在等比数列{an}中,a2=9,a5=243,则数列{an}的前4项和为()A.81B.120C.168D.192解析:公比q3=a5a2=2439=27,即q=
3,a1=a2q=3,S4=31-341-3=120.答案:B2.在等比数列{an}中,a1=4,q=5,使Sn>107的最小n值是()A.11B.10C.12D.9解析:Sn=a11-qn1-q=41-5n
1-5=5n-1>107,得n>11,∴选A.答案:A3.在等比数列{an}中,若a3=2S2+1,a4=2S3+1,则公比q等于()A.3B.-3C.-1D.1解析:a4-a3=2(S3-S2),∴a4=3a3,∴q=3.答案:A4.
若等比数列{an}的前n项和Sn=3n+a,则a等于()A.-4B.-2C.0D.-1解析:∵a1=S1=3+a,a2=S2-S1=6,a3=S3-S2=18.由a1·a3=a22,得a=-1.答案:D5.等比数列{an}的前3项的和等于首项
的3倍,则该等比数列的公比为()A.-2B.1C.-2或1D.2或-1解析:由题设条件可得a1+a1q+a1q2=3a1,∴q2+q-2=0,∴q=1或q=-2.故选C.答案:C6.等比数列{an}中,公比q≠1
,它的前n项和为M,数列{2an}的前n项和为N,则MN的值为()A.2a21qnB.12a1qn-1C.12a21qn-1D.2a21qn-1解析:{an}是公比为q的等比数列,则{2an}是首项为2a1,公比为1q的等比数列,由题意得M=a11-q
n1-q,N=2a1[1-1qn]1-1q,解得MN=12a21qn-1.答案:C二、填空题7.在等比数列{an}中,a3=3,S3=9,则首项a1=________,公比q=________(q≠1).解析:由a3=a1q2,①S
3=a11-q31-q=9,②即2q2-q-1=0,(2q+1)(q-1)=0,∵q≠1,∴q=-12,代入①得a1=12.答案:a1=12,q=-128.112+314+518+…+151256=________.解析:S=112+3
14+518+…+151256=(1+3+5+…+15)+(12+14+18+…+1256)=81+152+121-1281-12=64+(1-128)=64255256.答案:642552569.等比数列{an}的前n项和为Sn,已知S1,2S2,3S3成等差数列,则{an}的公比为______
__.解析:设等比数列{an}的公比为q,则S1=a1,2S2=2(a1+a1q)=2a1(1+q),3S3=3(a1+a1q+a1q2)=3a1(1+q+q2).∵S1,2S2,3S3成等差数列,∴4S2=S1+3S3,∴4a1(1+q)=a1+3a
1(1+q+q2),即3q2-q=0.解得q=13.答案:13三、解答题10.设等比数列{an}的前n项和为Sn,S4=1,S8=17,求{an}的通项公式.解:设{an}的公比为q,由S4=1,S8=17知q≠1,所以a1q4-1q-
1=1.①a1q8-1q-1=17.②由①②整理,得q8-1q4-1=17.解得q4=16.所以q=2或q=-2.将q=2代入①式得a1=115,所以an=2n-115.将q=-2代入①式得a1=-15,所以an=-1n×2n-15
.11.已知等比数列{an}的各项都是正数,且a2=6,a3+a4=72.(Ⅰ)求数列{an}的通项公式;(Ⅱ)记数列{an}的前n项和为Sn,证明:Sn+2·Sn<S2n+1.解:(Ⅰ)an=2×3n-1;(Ⅱ)Sn=3n-1⇒Sn+2·Sn-S2
n+1=-4×3n<0⇒Sn+2·Sn<S2n+1.B创新达标12.已知数列{an}是等差数列,且a1=2,a1+a2+a3=12.(1)求数列{an}的通项公式;(2)令bn=an·3n,求数列{bn}的前n项和.解:(1)设
数列{an}的公差为d,则a1+a2+a3=3a1+3d=12.又∵a1=2,∴d=2,∴an=2n.(2)由bn=an·3n=2n·3n,得Sn=2×3+4×32+…+(2n-2)×3n-1+2n×3n,①3Sn=2×32+4×33+…+(2
n-2)×3n+2n×3n+1②①-②得-2Sn=2(3+32+33+…+3n)-2n×3n+1=3(3n-1)-2n×3n+1.∴Sn=31-3n2+n×3n+1.获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com