【文档说明】宁夏银川市贺兰县景博中学2020届高三第五次模拟考试数学(文)试题.pdf,共(5)页,619.096 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-e3714fe8d927ba2b6c712145de95087e.html
以下为本文档部分文字说明:
景博高中2020届高三第五次模拟考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的
答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效.3.回答笫Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,每小题给出
的四个选项中,只有一项是符合题目要求的.1.已知全集UR,1Axx,1Bxx,则集合UCABU()A.1xxB.1xxC.11xxD.11xx2.2.i是虚数单位,
复数1i1iz-=+,则|1|z()A.1B.2C.3D.23.若向量(2,3)m,(1,)n,且(23)mmn,则实数的值为()A.329B.329C.32D.324.从A、B等5名学生中随机选出2人
,则B学生被选中的概率为()A.15B.25C.825D.9255.在等差数列na中,12018a,其前n项和为nS,若101221210SS,则2020S()A.-4040B.-2020C.2020D.40406.已知l,m,n为三条不同的直线,,为两个不
同的平面,下列命题中正确的是()A.lm,ln,且,mn,则lB.若平面内有不共线的三点到平面的距离相等,则//C.若m,mn,则//nD.若//mn,n,则m7.下列命题是真命题的是()A.命题:pxR,211x,则0:pxR,2011xB
.命题“若,,abc成等比数列,则2bac”的逆命题为真命题C.命题“若(1)10xxe,则0x”的逆否命题为:“若0x,则(1)10xxe”D.“命题pq为真”是“命题pq为真”的充分不必要条件8.若π3cos()64,则πsin(2)6
()A.18B.18C.716D.7169.《九章算术》有如下问题:“今有金棰,长五尺,斩本一尺,重四斤;斩末一尺,重二斤,问次一尺各重几何?意思是:“现在有一根金棰,长五尺,在粗的一端截下一尺,重4斤;
在细的一端截下一尺,重2斤,问各尺依次重多少?”假设金棰由粗到细各尺重量依次成等比数列,则从粗端开始的第三尺的重量是()A.22斤B.322斤C.422斤D.3斤10.已知某几何体的三视图如图所示,则该几何体的最大边长为()[来源:Zxxk.ComA.5B.6C.7D.2
211.把函数sin6fxx的图象上所有点的横坐标缩小到原来的12倍(纵坐标不变),再把得到图象上所有点向右平移6个单位长度,得到函数gx的图象.则下列命题正确的是()A.函数gx在区间,44kk
,kZ上单调递减B.函数gx在区间,63kk,kZ上单调递增C.函数gx的图象关于直线2kx,kZ对称D.函数gx的图象关于点,023k
,kZ对称12.椭圆2222:10xyabCab的左右焦点为F1,F2,过F2作x轴的垂线与C交于A,B两点,F1A与y轴相交于点D,若BD⊥F1A,则椭圆C的离心率等于()A.13B.3C.12D.33第Ⅱ卷本卷包括必考题和选考题
两部分,第13题~第21题为必考题,每个试题考生都必须作答,第22题~第23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.已知定义在R上的奇函数fx满足:当0x时,3log1fxx,则8f______.14.已知-1<x+
y<4且2<x-y<3,则z=2x-3y的取值范围是________.(答案用区间表示)15.在三角形ABC中,45C,4AB,D为BC边上的点,且13AD,3BD,则AC________.16.在四面体ABC
D中,2AB,1DADBCACB,则四面体ABCD的外接球的表面积为三、解答题:第17-21题每题12分,解答应在答卷的相应各题中写出文字说明,说明过程或演算步骤.17.(本小题满分12分)在ABC中,角A,B,C
所对的边分别是a,b,c,已知6a,1cos8A.(1)若5b,求sinC的值;(2)ABC的面积为1574,求bc的值.18.(本小题满分12分)目前有声书正受着越来越多人的喜爱.某有声书公司为了解用户使用情况,随机选取了100名用户,统计出年龄分布和
用户付费金额(金额为整数)情况如下图.有声书公司将付费高于20元的用户定义为“爱付费用户”,将年龄在30岁及以下的用户定义为“年轻用户”.已知抽取的样本中有38的“年轻用户”是“爱付费用户”.(1)完成下面的22列联表,并据此资料,能否有95%的把握认为用户“爱付费”与其为“年轻用户”有
关?爱付费用户不爱付费用户合计年轻用户非年轻用户合计(2)若公司采用分层抽样方法从“爱付费用户”中随机选取5人,再从这5人中随机抽取2人进行访谈,求抽取的2人恰好都是“年轻用户”的概率.20PKk0.050.0250.0100.0050.0010k3.8415.0246.635
7.87910.828附:22nadbcKabcdacbd.19.(本小题满分12分)如图,将直角边长为2的等腰直角三角形ABC,沿斜边上的高AD翻折,使二面角BADC的大小为3,翻折后BC的中点
为M.(Ⅰ)证明BC⊥平面ADM;(Ⅱ)求点D到平面ABC的距离.20.(本小题满分12分)已知函数xxfxe.(1)求函数fx的最值;(2)证明:2lnfxxxe.21.(本小题满分12分)在平面直角坐标系xOy中,直线:1ly与抛物线2:20
Cypxp交于M,抛物线C的焦点为F,且1MF.(Ⅰ)求抛物线C的方程;(Ⅱ)设点Q是抛物线C上的动点,点D,E在y轴上,圆2211xy内切于三角形QDE,求三角形QDE的面积的最小值.请考生在第22、23题中任选一题作答,如果多做则按所
做的第一题计分,作答时请用2B铅笔在答题卡上把所选题目的题号涂黑.选修4-4:坐标系与参数方程选讲.22.平面直角坐标系xOy中,已知直线l的参数方程为32xsys(s为参数),以坐标原点为极点,以x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为2
222cos,R,直线l与曲线C交于A,B两点.(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)已知点P的极坐标为2,24,求PAPB的值.选修4-5:不等式
选讲.23.已知函数0,0fxxaxbab.(Ⅰ)若1ab时,解不等式2fxx;(Ⅱ)若fx的值域是4,,若1111kab恒成立,求k的最大值.