【文档说明】《2023届高考数学一轮复习解题技巧方法》第五章 第2节 等差、等比数列基本性质-解析版.docx,共(6)页,394.316 KB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-ddd2af5e6aaceb23021fd8f8c5a5421e.html
以下为本文档部分文字说明:
第2节等差、等比数列基本性质知识与方法1.在等差数列na中,设m、n、r、s为正整数,若mnrs+=+,则mnrsaaaa+=+;特别地,若2mnr+=,则2mnraaa+=,这是等差数列的常用基本性质,这一性质可以推广到项数更多的情
形,例如,设p、q也是正整数,且mnprsq++=++,则mnprsqaaaaaa++=++.在等差数列na中,像“mnprsqaaaaaa++=+++”这样的等式,只要满足左右两侧项数相同,且所有项的下标之和相等,则该等式一定成立.2.等差数列na的前n项和为nS,则12nn
Sna+=.3.在等比数列na中,设m、n、r、s为正整数,且mnrs+=+,则mnrsaaaa=,特别地,若2mnr+=,则2mnraaa=,这是等比数列的常用基本性质,这一性质可以推广到项数更多的情形
,例如,设u、v也是正整数,且mnursv++=++,则mnursvaaaaaa=.在等比数列na中,像“mnursvaaaaaa=”这样的等式,只要满足左右两侧项数相同,且所有项的下标之和相等,则该等式一定成立.典型例题【例
1】在等差数列na中,已知()18234aa=−,则该数列的前11项和11S=()A.33B.44C.55D.66【解析】解法1:()()1821116341734533aaadadada=−+=−−+==,所以1111162111133Saa+===.解法2:
()18218266343124123aaaaaa=−+===,所以1111162111133Saa+===.解法3:本题属单条件等差数列问题,可设nax=,则由()18234aa=−可得()34xx=−,解得:3x=,
所以111133Sx==.【答案】A变式1在等差数列na中,已知()16234aa=−,则该数列的前10项和10S=_______.【解析】解法1:()()1621111341512341812296aaadadadad=−+=−++=+=,所
以()1011104552930Sadad=+=+=.解法2:()1621625.55.5343124123aaaaaa=−+===,所以101105.52101030Saa+===.解法3:本题属单条件等差数列问题,可设nax=,则由()16234aa=−可得()34xx=−,解得:3x
=,所以101030Sx==.【答案】30【反思】在等差数列的小题中运用性质计算时,可以允许下标出现分数,结果不会出现,但大题之中不能这么写.变式2等差数列na的前n项和为nS,已知815a=,10100S=,则na=_______.【解析】解法1:由题意,81101715
1045100aadSad=+==+=,解得:11a=,2d=,所以()11221naann=+−=−.解法2:101105.55.52100101010010Saaa+====,所以85.52.55aad
−==,故2d=,从而()8821naandn=+−=−.【答案】21n−变式3若两个等差数列na和nb的前n项和分别是nS、nT,已知32nnSnTn=+,则77ab=_______.【解析】7713771313
31313131325aaSbbT====+.【答案】135【例2】等比数列na中,44a=,则26aa等于()A.4B.8C.16D.32【解析】226416aaa==.【答案】C变式1已知数列1、1a、2a、9是等差数列,数列1、1b、2
b、3b、9是等比数列,则212baa=+________.【解析】由题意,121910aa+=+=,2221993bb===,又2210bq=,所以23b=,故212310baa=+.【答案】310变式2(2014·广东)
若正项等比数列na满足510119122aaaae+=,则1220lnlnlnaaa+++=________.【解析】由题意,5510119121011101110112aaaaaaaaeaae+=+==,所以()()()1010550122012201
011lnlnlnlnlnlnln50aaaaaaaaee+++=====.【答案】50强化训练1.(★★)设nS是公差0d的等差数列na的前n项和,若983Sa=,则1553Sa=()A.15B.17C.19D.21【解析】解法1:()9811153936372Saadadad=
+=+=−,所以()15151513515105151052215953343422dddSadaadddd−++====+−+.解法2:98885333Saaaa==,所以1585515153
3Saaa==.【答案】A2.(★★)记nS为等差数列na的前n项和,若4524aa+=,648S=,则na的公差为()A.lB.2C.4D.8【解析】454.54.522412aaaa+===,6
3.53.56488Saa===,所以4.53.54daa=−=.【答案】C3.(★★)在正项等比数列na中,369lglglg6aaa++=,则111aa的值是()A.10000B.1000C.100D.10【
解析】()323693696661116lglglglglg3lg610010000aaaaaaaaaaaa++=======.【答案】A4.(★★)等差数列na的前n项和为nS,若2723aa+=,651S=,则19aa+=_______.【解析】2
74.54.523232232aaaa+===,6163.53.52175166512Saaa+====,所以4.53.53aad−==,故()1953.5221.526aaaad+==+=.【答案】265.等比数列na的各项为正数,且564718aaaa+=
,则3132310logloglogaaa+++=()A.12B.10C.8D.352loga+【解析】()()5556475656313103121035632189logloglogloglog910aaaa
aaaaaaaaaaa+===++====【答案】B6.(★★★)已知数列na的首项为1,数列nb为等比数列且1nnnaba+=,若10112bb=,则21a=_______.【解析】()10
10322121112201011122021024aaaaabbbbbaaa=====.【答案】10247.(★★)设等差数列na的前n项和为nS,若1045aS+=,则7S=_______.【解析】解法1:由题意,104102.54455aSaaa+=
+==,所以41a=,故7477Sa==.解法2:本题属单条件等差数列问题,可设nax=,则1045451aSxxx+=+==,所以777Sx==.【答案】78.(★★)设等差数列na的前n项和为nS,若3942aama+=−,936S=,则m=_____
__.【解析】394394552244maamaaaamama+=−++===,又9599364mSa===,所以16m=.【答案】169.(★★★)已知na为等比数列,472aa+=,568aa=−,则110aa+=()A.7B.5C.5−D.7−【解析】564
78aaaa==−4a、7a是方程2280xx−−=的两根,从而4742aa==−或4724aa=−=,若4742aa==−,则37412aqa==−,所以3411073817aaaaqa+=+=−+=−,若4724aa=−=,则3
742aqa==−,所以()3411073187aaaaqa+=+=+−=−.【答案】D10.(★★★)设nS是等差数列na的前n项和,若5359aa=,则95SS=()A.lB.1−C.2D.12【解析】595353959519559aSaaSa===
=.【答案】A11.(★★★)已知等差数列na满足23a=,117ka−=()2k,100kS=,则k的值为()A.10B.9C.8D.7【解析】()()()1213171010010222kkkkaakaakSkk−+++======.【答案】A1
2.(★★★)设等差数列na、nb的前n项和分别为nS、nT,若对任意正整数n都有2343nnSnTn−=−,则935784aabbbb+++的值为______.【解析】939393661157846666611
11192221141aaaaaaaaSbbbbbbbbbT++=+=====++【答案】194113.(★★★)已知na是等差数列,nS是其前n项和,若454000SS=,点()11,Pa,()20232023,Qa,O为原点,则OPOQ的值为()A.2023B.20
23−C.0D.1【解析】()464000454000400045464740004640004000461002aaSSSSaaaaa+=−=++=−+=+=,所以46400020232220aa+==,故20230a=,从而1202320232023OPOQaa=+=.【答案】
A