【文档说明】重庆市育才中学2022届高三上学期8月高考适应性考试(二)数学答案.pdf,共(4)页,248.435 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-d74031ca46bf908a06ef8dee7a1d35f7.html
以下为本文档部分文字说明:
第1页共4页重庆育才中学高2022届高考适应性考试二数学试题一、选择题:1-4CADA5-8BCDD二、选择题:全部选对的得5分,部分选对的得2分,有选错的得0分.9.ACD10.BCD11.AD12.CD二、填空题:1
3.414.xxxf1)(2、(答案不唯一)15.).2ln(x16.)0,221(e四、解答题:17.解(1)an=2n-1.(2)由(1)知122nnb,数列nb是首项为2,公比为4的等比数列,前n项和nT所以nT=3)14(2
41)412nn(.18.解:(1)Abccbacos2222,cc39372,02832cc,4c33sin21AbcSABC.(2)法1:由00060sin42160sin321120sin4321A
DADSABC得712AD.法2:由三角形内角平分线定理,43ACABCDBD,3774BD,在三角形ABD中,根据余弦定理得022260cos4247374ADAD)(,
04919242ADAD,解得712AD或716(舍去).19.解:(Ⅰ)由年度周期12345纯增数量(单位:万辆)3691527所以3x,12y,………………………………………………………………………2分51132639415527237iiixy
.第2页共4页所以1221niiiniixynxybxnx2222222375312575.755451234553.…………5分因为ybxa过点,xy,所以5.7yxa,5.1a,所以5.75.1
yx.…………………………………………………………6分2025~2030年时,7x,所以5.775.134.8y,所以2025~2030年间,机动车纯增数量的值约为34.8万辆.…………………………7分(Ⅱ)根据列联表,由22na
dbcKabcdacbd得观测值为22200(85251575)253.125100100160480K,…………………………………10分3.1253.841,所以没有95%的把握认为“对限行的意见与是否拥有私家车有关”.………
12分20.解:(Ⅰ)在1BB上取点H,使1BHCF,在正方形11BCCB中,四边形1BFCH是平行四边形,所以1BFHC∥且1BFHC=,·······································
··················2分又因为11AEBH,可得11EDHC∥且11=EDHC,所以1EDBF∥且1EDBF=,所以B、F、1D、E四点共面.··················································4分(Ⅱ)连接BG,BD
,则2BCFGDBDGEAVVV,设CFt,则1DGt,211111=22()222(1)3232tttVt(),所以8-2(1)52(1)3tt,解得12t,········
··········································8分如图,以B为坐标原点,分别以BC、BA、1BB为x轴、y轴、z轴建立空间直角坐标系Bxyz则(0,0,0)B,(0,2,1)E,1(2,0,)2F第3页共4页设平面B
EGF法向量为(,,)nxyz,由00BEnBFn得201202yzxz令z=2,得1(,1,2)2n··························
····················································10分又平面ABCD法向量为(0,0,1)m,所以22421cos,2111()142mnmnmn
,所以平面与平面ABCD所成锐二面角的余弦值为42121.······································12分21.解:(1)椭圆方程为1422y
x,设),(yxP,则12)1(4)1(||22222yyyyxMA316)31(35232yyy,当31y时,||MA的最大值为334;(2)设M(x0,y0),P(x1,y1),Q(x2,y2),由题意知PQ斜率存在,且不为0,所以
x0y0≠0,则直线MP和MQ的方程分别为x1x+y1y=b23,x2x+y2y=b23.因为点M在MP和MQ上,所以有x1x0+y1y0=b23,x2x0+y2y0=b23,则P,Q两点的坐标满足方
程x0x+y0y=b23,所以直线PQ的方程为x0x+y0y=b23,可得)3,0()0,3(022ybFxbEo和所以S△EOF=12·|OE||OF|=b418|x0y0|,因为22202202bayaxb,202202yaxb≥2ab|x0y0|,所以|x0y0|≤
ab2,所以S△EOF=b418|x0y0|≥b39a,当且仅当202202yaxb=a2b22时取“=”,故△EOF面积的最小值为b39a.22.解:(1)定义域为),0(,222)1(2)1(21)1()1()1()(
xxxxxxxxf0恒成立,所以函数)(xf在),0(为减函数.(2)不妨设0ba.先证2lnlnbababa,只要证2lnlnbababa,即2ln11bababa,第4页共4页即02ln11
bababa,令1,xbax,则需证02ln11xxx,由(1)知,2ln11)(xxxxf在),0(为减函数.当1x时,2ln11)(xxxxf)1(f,又0)1(f,所以02ln11xxx
,即2lnlnbababa得证。下面再证babaablnln,即证abbabaln,令1,tbat,只要证ttt1ln2,0)1(ln2ttt令)1(),1(ln2)(tttttg,0)1(112
)(222tttttg恒成立,)(tg在),1(为减函数,)1()(gtg,即得ttt1ln2,所以babaablnln成立.