四川省宜宾市第四中学2020届高三下学期第二次高考适应性考试数学(文)试题 【精准解析】

DOC
  • 阅读 4 次
  • 下载 0 次
  • 页数 23 页
  • 大小 1.973 MB
  • 2024-09-15 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
四川省宜宾市第四中学2020届高三下学期第二次高考适应性考试数学(文)试题 【精准解析】
可在后台配置第一页与第二页中间广告代码
四川省宜宾市第四中学2020届高三下学期第二次高考适应性考试数学(文)试题 【精准解析】
可在后台配置第二页与第三页中间广告代码
四川省宜宾市第四中学2020届高三下学期第二次高考适应性考试数学(文)试题 【精准解析】
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的20 已有4人购买 付费阅读2.40 元
/ 23
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】四川省宜宾市第四中学2020届高三下学期第二次高考适应性考试数学(文)试题 【精准解析】.doc,共(23)页,1.973 MB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-cd17c2d1ef7558bde0ed92459dc5e18e.html

以下为本文档部分文字说明:

四川省宜宾市第四中学高2020届第二次高考适应性考试文科数学一、选择题1.已知集合()ln1Axyx==−,240Bxx=−,则AB=A.2xx−B.12xxC.12xxD.2xx【答案】C【解析】【分析】可求出集合A,B,然后进行交集的运算即可.【详

解】()ln1{|1}Axyxxx==−=>,24022Bxxxx=−=−;∴A∩B={x|1<x≤2}.故选C.【点睛】考查描述法的定义,对数函数的定义域,一元二次不等式的解法,交集的运算.2.已知复数z满足(

)1i+z=2i,则z=()A.2B.1C.22D.12【答案】A【解析】【分析】根据复数的运算法则,可得z,然后利用复数模的概念,可得结果.【详解】由题可知:()()()22212221111iiiiiziiii−−===++−−由21i=−,所

以1zi=+所以22112z=+=故选:A【点睛】本题主要考查复数的运算,考验计算,属基础题.3.某公司生产A,B,C三种不同型号的轿车,产量之比依次为2:3:4,为检验该公司的产品质量,用分层抽样的

方法抽取一个容量为n的样本,若样本中A种型号的轿车比B种型号的轿车少8辆,则n=()A.96B.72C.48D.36【答案】B【解析】【分析】根据分层比例列式求解.【详解】由题意得23872.99nnn−=−=选B.【点

睛】本题考查分层抽样,考查基本分析求解能力,属基础题.4.已知向量a,b的夹角为2,且()2,1a=−,2b=,则2ab+=()A.23B.3C.21D.41【答案】C【解析】【分析】利用222(2)abab+=+计

算.【详解】由已知222(1)5a=+−=,cos02abab==,∴222(2)abab+=+222244(5)4221aabb=++=+=,∴221ab+=.故选C.【点睛】本题考查向量的

数量积运算,解题关键是掌握数量积的性质:22aa=,把向量模的运算转化为向量的数量积.5.为了得到函数sin26yx=−的图象,只需把函数sin2yx=的图象上所有的点()A.向左平移6个单位长度B.向右平移6个单位长度C.向左平移12个单位长度D.向右平移12个单位长度【答

案】D【解析】【分析】通过变形sin2sin2(())612xxfx−=−=,通过“左加右减”即可得到答案.【详解】根据题意sin2sin2(())612xxfx−=−=,故只需把函数sin2

yx=的图象上所有的点向右平移12个单位长度可得到函数sin26yx=−的图象,故答案为D.【点睛】本题主要考查三角函数的平移变换,难度不大.6.若实数x,y满足条件25024001xyxyxy+−+−

,目标函数2zxy=−,则z的最大值为()A.52B.1C.2D.0【答案】C【解析】【分析】画出可行域和目标函数,根据平移得到最大值.【详解】若实数x,y满足条件25024001xyxyxy+−+−,目标函数2zxy=−如图:当3,12xy==时函数取最大值为2故答案选C

【点睛】求线性目标函数(0)zaxbyab=+的最值:当0b时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当0b时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,

z值最大.7.已知l,m为两条不同直线,,为两个不同平面,则下列命题中真命题的是()A.若//lm,m,则//lB.若lm⊥,m,则l⊥C.若//,m,则//mD.若⊥,m,则m⊥【答案】C【解析】【分析】根据直线、平面之间的位置关系逐项

判断.【详解】若//lm,m,则//l或l,A错误;若lm⊥,m,则l或l在平面外,B错误;若//,m,则直线m与平面没有公共点即//m,C正确;若⊥,m,直线m不一定垂直于,D错误.故选:C【点睛】本题考查

空间中直线与平面的位置关系,属于基础题.8.已知双曲线C:2221yxb−=的一条渐近线过点(,4)b,则C的离心率为()A.52B.32C.5D.3【答案】C【解析】【分析】求得双曲线的渐近线方程,由题意可得2b=,再由

离心率公式,计算可得所求值.【详解】双曲线2221yCxb−=:的渐近线方程为ybx=,由题意可得24b=,可得2b=,则双曲线的离心率为145cea==+=.故选C.【点睛】本题考查双曲线的方程和性质,主要是渐近线方程和离心率的求法,考查方程思想和运算能力,属于基础题.9.若不等式21

0xax++对于一切10,2x恒成立,则a的最小值是()A.0B.2−C.52−D.3−【答案】C【解析】【详解】试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论.解:不

等式x2+ax+1≥0对一切x∈(0,12]成立,等价于a≥-x-1x对于一切10,2x成立,∵y=-x-1x在区间10,2上是增函数∴115222xx−−−−=−∴a≥-52∴a的最小值为-52故答案为C.考点:不等式的应用点评:本题

综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题10.某简单几何体的三视图如图所示,若该几何体的所有顶点都在球O的球面上,则球O的体积是A.823B.43C.12D.323【答案】B

【解析】【分析】由三视图还原几何体,可知该几何体为直三棱柱,底面为等腰直角三角形,直角边长为2,侧棱长为2,然后将其放入正方体进行求解.【详解】由三视图还原原几何体如图,可知该几何体为直三棱柱,底面为等腰直角三角形,直角边长为2,侧棱长为

2.把该三棱锥补形为正方体,则正方体体对角线长为22222223++=.∴该三棱柱外接球的半径为3.体积V34(3)433==.故选B.【点睛】本题考查空间几何体的三视图,考查多面体外接球表面积与体积的求法,是中档题.11.已知ABC是长

为2的等边三角形,P为平面ABC内一点,则()PAPBPC+的最小值是()A.2−B.32−C.43−D.1−【答案】B【解析】【分析】以BC为x轴,BC的垂直平分线DA为y轴,D为坐标原点建立平面直角坐标系,表示出向量PA,PB,PC,得到2()22(3)+=−−PAPBPCxyy,

进而可求出结果.【详解】如图,以BC为x轴,BC的垂直平分线DA为y轴,D为坐标原点建立平面直角坐标系,则(0,3)A,(1,0)B−,(1,0)C,设(,)Pxy,所以(,3)PAxy=−−,(1,)PBxy=−−−,(1,)PCxy=−−,所以(2,2)PBPCxy+=−−,222333(

)22(3)22()222+=−−=+−−−PAPBPCxyyxy≥,当3(0,)2P时,所求的最小值为32−.故选:B【点睛】本题主要考查求向量数量积的最值,通过建系的方法处理,熟记向量数量积的坐标运算即可,属于常考题型.12.函数

()()3132xfxxxex=−−−在区间)(3,22,3−上的零点个数为()A.2B.3C.4D.5【答案】C【解析】【分析】令()()31302xfxxxex=−−=−,得()22123xxxex−=−,在坐标系中分别作

出函数()()22xgxxxe=−,()213hxx=−的图像,则两个图像的交点个数即()fx的零点个数.【详解】令()()31302xfxxxex=−−=−,得()22123xxxex−=−.设()()22xgxxxe=−,(

)213hxx=−.()()22exgxx=−.当32x−−时,()0gx;当22x−时,()0gx;当23x时,()0gx.所以()gx的极小值为()()()222222geh=−,极大值为()()()222222geh−−=+−,又()()31

51336ghe−==−,()()33gh,且()hx在)3,3−−,()3,0−上单调递增,在()0,3,(3,3上单调递减.结合这两个函数的图象,可知这两个函数的图象共有4个交点,从而())(3,22,3fx

−上共有4个零点.【点睛】本题考查函数与导数的综合应用,考查化归与转化的数学思想.函数()yfx=的零点方程()0fx=的实数根函数()yfx=的图像与x轴交点的横坐标;常用解题方法有:直接作函数()yfx=的图像,直接解方程()0fx

=,分离参变量,分离函数(如本题:令()0fx=得到()ygx=,()yhx=两个函数).二、填空题13.已知直线1l:30kxy++=,2l:30xky++=,且12ll//,则k的值______.【答案】1−【解析】【分析】根据两直线平行列关于k的方程,解出k的值

,然后代入两直线方程进行验证是否满足12ll//,即可得出实数k的值.【详解】直线1l:30kxy++=,2l:30xky++=,且12ll//,则11kk=,解得1k=−或1.当1k=时,1:30lxy++

=,2:30lxy++=,两直线重合,不合乎题意;当1k=−时,1:30lxy−++=,即30xy−−=,2:30lxy−+=,两直线平行,满足题意.因此,1k=−.故答案为:1−【点睛】本题考查利用两直线平行求参数,在求出参数后,还应将参

数的值代入两直线方程,验证两直线是否平行,考查运算求解能力,属于基础题.14.不等式sin2cos21xx+在区间[0,2]上的解集为__________.【答案】5(0,)(,)44【解析】【分析】

原不等式可化为2sin(2)42x+,利用正弦函数的性质和整体法可求其解集.【详解】由sin2cos21xx+有2sin(2)42x+,所以3222,444kxkkZ+++,解出,4kxkkZ+,又

0,2x,所以04x或54x,故解集为5(0,)(,)44.故答案为:5(0,)(,)44.【点睛】本题考查三角不等式,注意利用三角变换公式将原不等式化简为()sinAxB+的形式,再利用正弦函数的性质求解.15.已知直线ya

=与双曲线()2222:10,0xyCabab−=的一条渐近线交于点P,双曲线C的左、右顶点分别为1A,2A,若21252PAAA=,则双曲线C的离心率为_____.【答案】2或103【解析】【分析】解出点P的坐标,用两点间距离公

式求出212,PAAA,化简整理出,,abc的关系式,从而求得离心率.【详解】若渐近线的方程为byxa=,则点P的坐标为2,aab.因为21252PAAA=,所以22225aaaab−+=,则21

4ab−=,所以3ab=,从而221013bea=+=.若渐近线的方程为byxa=−,则点P的坐标为2,aab−,同理可得2e=.【点睛】本题考查双曲线的离心率,考查运算求解能力与分类讨论的数学思想.16.已知函数()12yfx=+−(Rx

)为奇函数,()211xgxx−=−,若函数()fx与()gx图像的交点为()11,xy,()22,xy,…,(),mmxy,则()1miiixy=+=________.【答案】3m【解析】【分析】分别判断函数()fx与()gx的对称性,结合函数的对

称性进行求解即可.【详解】解:因为函数(1)2yfx=+−为奇函数,所以函数()fx的图象关于点(1,2)对称,211()211xgxxx−==+−−关于点(1,2)对称,所以两个函数图象的交点也关于点(1,2)对称,

()11212()()24322miimmimmxxxyyymxy=+++++++=++==故答案为:3m【点睛】本题主要考查函数对称性的应用,结合函数奇偶性以及分式函数的性质求出函数的对称性是解决本题的关键.三、解答题17.ABC的内

角,,ABC的对边分别为,,abc,已知2coscoscosbBaCcA=+.(1)求BÐ的大小;(2)若2b=,求ABC面积的最大值.【答案】(1)3;(2)3.【解析】【分析】(1)利用正弦定理

将边化角,结合诱导公式可化简边角关系式,求得1cos2B=,根据()0,B可求得结果;(2)利用余弦定理可得224acac+−=,利用基本不等式可求得()max4ac=,代入三角形面积公式可求得结果

.【详解】(1)由正弦定理得:()2sincossincossincossinBBACCAAC=+=+ABC++=()sinsinACB+=,又()0,Bsin0B2cos1B=,即1cos2B

=由()0,B得:3B=(2)由余弦定理2222cosbacacB=+−得:224acac+−=又222acac+(当且仅当ac=时取等号)2242acacacacac=+−−=即()max4ac=三角形面积S

的最大值为:14sin32B=【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理解三角形、三角形面积公式应用、基本不等式求积的最大值、诱导公式的应用等知识,属于常考题型.18.某大型科学竞技真人秀节目挑选选手的方式为:不但

要对选手的空间感知、照相式记忆能力进行考核,而且要让选手经过名校最权威的脑力测试,120分以上才有机会入围.某重点高校准备调查脑力测试成绩是否与性别有关,在该高校随机抽取男、女学生各100名,然后对这200名学生进行脑力测试.规定:分数不小于120分为“入围学生”,分数小于

120分为“未入围学生”.已知男生入围24人,女生未入围80人.(1)根据题意,填写下面的2×2列联表,并根据列联表判断是否有95%以上的把握认为脑力测试后是否为“入围学生”与性别有关;性别入围人数未

入围人数总计男生女生总计(2)用分层抽样的方法从“入围学生”中随机抽取11名学生,求这11名学生中男、女生人数;若抽取的女生的脑力测试分数各不相同(每个人的分数都是整数),分别求这11名学生中女生测试分数平均分的最小值.()20PKK0.100.050

.010.0050K2.7063.8416.6357.7879附:()()()()()22nadbcKabcdacbd−=++++,其中nabcd=+++.【答案】(1)见解析,没有95%以上的把握认为

脑力测试后是否为“入围学生”与性别有关;(2)女生5人,男生6人,122.【解析】【分析】(1)根据题意,填写列联表.根据参考公式,计算2K的观测值,再根据临界值表,即得结论;(2)根据分层抽样原理计算被抽到的女生人数,即得被抽到

的男生人数.根据题意,被抽到的女生测试分数的平均分最小时,这5名女生的测试分数分别为120,121,122,123,124,即可求平均分的最小值.【详解】(1)填写列联表如下:性别入围人数未入围人数总计男生2476100女生2080100总计441562002K

的观测值()220024807620200384110010044156429K−==.所以没有95%以上的把握认为脑力测试后是否为“入围学生”与性别有关.(2)在这11名学生中,被抽到的女生人数为1120544=(人),被抽

到的男生人数为1124644=(人)或1156−=(人).因为入围的分数不低于120分,且每个女生的测试分数各不相同,每个人的分数都是整数.所以这11名学生中女生测试分数的平均分的最小值为1201211221231241225++++=.【点睛】本题考查列联表和独

立性检验,考查分层抽样,属于中档题.19.如图,已知四棱锥PABCD−中,底面ABCD是正方形,侧面PCD⊥底面ABCD,2PDDC==,120PDC=,E是PC的中点,点F在AB上,且4ABAF=.(1)求证:EFC

D⊥;(2)求点F到平面ADE的距离.【答案】(1)证明见解析;(2)34【解析】【分析】(1)过E作EHDC⊥于H,连结FH,根据2PDDC==,120PDC=,E是PC的中点,利用平面几何的知识,得到12DH=,再结合4ABAF=,即12AF=,得到FHDC⊥,利用线面垂直的判

定定理得到DC⊥面EFH即可.(2)由(1)知,//FH平面ADE,将点F到平面ADE的距离转化为点H到平面ADE的距离,根据侧面PCD⊥底面ABCD,得到AD⊥侧面PDC,设点H到平面ADE的距离为d,

利用等体积法由HADEADEHVV−−=求解.【详解】(1)如图所示:过E作EHDC⊥于H,连结FH,因为2PDDC==,120PDC=,E是PC的中点,所以33,cos302===CECHCE,所以12DH=,∵底面ABCD是正方形,4ABAF=,即12AF=,∴AFHD是矩形

,∴FHDC⊥,又EHDC⊥,EHFHH=,∴DC⊥面EFH,又∵EF面EFH,∴DCEF⊥.(2)由(1)知,//FH平面ADE,∴点F到平面ADE的距离等于点H到平面ADE的距离,∵底面ABCD是正方形,侧面PCD⊥底面ABCD,∴AD⊥侧面PDC,∴ADDE⊥,在三棱锥H

ADE−中,设点H到平面ADE的距离为d,由于HADEADEHVV−−=,∴1133DEHADESADSd=,在侧面PCD中,2PDDC==,120PDC=,E是PC中点,∴1DE=,32EH=,11113232=

DHEHADADDEd∴111311221322232=d,∴34d=,即点F到平面ADE的距离为34.【点睛】本题主要考查线面垂直与线线垂直的转化,点到面的距离以及等体积法的应用,还考查了转化

化归的思想和逻辑推理的能力,属于中档题.20.已知定点S(-2,0),T(2,0),动点P为平面上一个动点,且直线SP、TP的斜率之积为34−.(1)求动点P的轨迹E的方程;(2)设点B为轨迹E与y轴正半轴的交点,是否存在直线l,使得l交

轨迹E于M,N两点,且F(1,0)恰是△BMN的垂心?若存在,求l的方程;若不存在,说明理由.【答案】(1)221(2)43xyx+=;(2)存在,3163321yx=−.【解析】【分析】(1)设(,)Pxy,由34SPTPkk=−结合两点间斜率计算公式,整理化简即可;(2)根据

题意,设直线l的方程为33yxm=+,()()1122,,,MxyNxy,因为MFBN⊥,所以0MFBN=,结合直线和椭圆联立的方程组,求出m的值,根据题意,确定出m即可得出结果.【详解】(1)设(,

)Pxy,由已知有3224yyxx=−+−,整理得动点P的轨迹E的方程为221(2)43xyx+=(2)由(1)知,E的方程为221(2)43xyx+=,所以()0,3,B又()1,0F,所以直线BF的斜率3BFk=−,假设存在直线,使得F是BMN的

垂心,则BFMN⊥.设的斜率为k,则1BFkk=−,所以33k=.设的方程为33yxm=+,()()1122,,,MxyNxy.由2233143yxmxy=++=,得()2213831230xmxm++−=,由()()228341312

30mm=−−,得393933m−,()2121212383,1313mmxxxx−+=−=.因为MFBN⊥,所以0MFBN=,因为()()11221,,,3MFxyBNxy=−−=−,所以1212(1)(3)0

xxyy−−−=,即()1212331()(3)033xxxmxm−−++−=,整理得()2121234(1)3033mxxxxmm−+−−+=,所以22383412(3)(1)()30313313mmmmm−−−−−

+=,整理得22153480mm−−=,解得3m=或16321m=−,当3m=时,直线MN过点B,不能构成三角形,舍去;当16321m=−时,满足393933m−,所以存在直线:3163321yx=−,使得F是BMN的垂心.【点睛】本题主要考查了

利用直接法求曲线的轨迹,直线与椭圆的综合应用,数量积在椭圆中的应用,对运算能力要求高,难度较大.21.已知函数()1lnfxaxx=+,aR.(1)求()fx的极值;(2)若方程()2ln20fxxx−++=有三个解,求实数a的取值范围.【答案】(1)当0a时,

极小值a;当0a=时,无极值;当0a时,极大值a;(2)3,22e−−【解析】【分析】(1)求得()fx的定义域和导函数,对a分成0,0,0aaa=三种情况进行分类讨论()fx的极值.(2)构造

函数()()2ln2hxfxxx=−++,通过()hx的导函数()'hx研究()hx的零点,对a分成1110,,0,222aaaa=−−−进行分类讨论,结合()hx有三个零点,求得a的取值范围.【详

解】(1)()fx的定义域为()0,+,()()22111axfxaxxx−=−=,当0a时,()fx在()0,1上递减,在()1,+上递增,所以()fx在1x=处取得极小值a,当0a=时,()

0fx=,所以无极值,当0a时,()fx在()0,1上递增,在()1,+上递减,所以()fx在1x=处取得极大值a.(2)设()()2ln2hxfxxx=−++,即()()l2212naxxxhxa+=−++,()22121aahxxx−=−+(

)22212xaxax+−−=()()()2120xxaxx−+=.①若0a,则当()0,1x时,()0hx,()hx单调递减,当()1,x+时,()0hx,()hx单调递增,()hx至多有两个零点.②若12a=−,则

()0,x+,()0hx(仅()10h=).()hx单调递增,()hx至多有一个零点.③若102a−,则021a−,当()0,2xa−或()1,x+时,()0hx,()hx单调递增;当()2,1xa−时,()0hx,()hx单调递减,要使()hx有三个

零点,必须有()()2010hah−成立.由()10h,得32a−,这与102a−矛盾,所以()hx不可能有三个零点.④若12a−,则21a−.当()0,1x或()2,xa−+

时,()0hx,()hx单调递增;当()1,2xa−时,()0hx,()hx单调递减,要使()hx有三个零点,必须有()()1020hha−成立,由()10h,得32a−,由()()()221ln210ha

aa−=−−−及12a−,得2ea−,322ea−−.并且,当322ea−−时,201e−,22ea−,()()()2222242242heeaeeee−−−=++−+−−4150e+−,()()()2

222222222326370heeaeeeeee−−−=++−+=−−−.综上,使()hx有三个零点的a的取值范围为3,22e−−.【点睛】本小题主要考查利用导数研究函数的极值,考查利用导数研究方程的根,考查

分类讨论的数学思想方法,属于难题.22.在直角坐标系xOy中,曲线C的参数方程为3cos23sinxy=+=(为参数),直线l的方程为y=kx.以坐标原点为极点,x轴正半轴为极轴建立极坐标系;(1)求曲线C的极坐标方程;(2)曲线

C与直线l交于A、B两点,若=23OAOB+,求k的值.【答案】(1)24cos10−+=(2)33或33−【解析】【分析】(1)先将曲线C的参数方程化为普通方程,再根据极坐标与直角坐标的互化公式cossinxy==,即可求出曲线C的极坐标方程

;(2)设出直线l的极坐标方程)11(,0,π)=R,与曲线C的极坐标方程联立,可得214cos10−+=,即可得到121124cos,10+==,根据的几何意义可知,121223OAOB+=+=+=,即可求出1,于

是可得k的值.【详解】(1)223cos2,4103sinxxxyy=+−++==,所以曲线C的极坐标方程为24cos10−+=.(2)设直线l的极坐标方程为)11(,0,π)=R,其中

1为直线l的倾斜角,代入曲线C得214cos10,−+=设,AB所对应的极径分别为12,.21211214cos,10,16cos40+===−,121223OAOB+=+=

+=,13cos2=,满足,1π6=或56,l的倾斜角为6或56,则13tan3k==或33−.【点睛】本题主要考查曲线的参数方程化极坐标方程,以及极坐标方程和的几何意义的应用,意在

考查学生的数学运算能力,属于基础题.23.已知,xyR,且1xy+=.(1)求证:22334xy+;(2)当0xy时,不等式11|2||1|aaxy+−++恒成立,求a的取值范围.【答案】(1)见证明;(2)35[,

]22−.【解析】【分析】(1)由柯西不等式即可证明;(2)可先计算11xy+的最小值,再分2a,1a2−,1a−三种情况讨论即可得到答案.【详解】解:(1)由柯西不等式得2222211(3)1()1333xyxy++

+.∴()22243()3xyxy++,当且仅当3xy=时取等号.∴22334xy+;(2)1111()2224yxyxxyxyxyxyxy+=++=+++=,要使得不等式11|2||1|aaxy+−++恒成立,即可转化

为|2||1|4aa−++,当2a时,421a−≤,可得522a,当1a2−时,34,可得1a2−,当1a−时,214a−+,可得312a−−,∴a的取值范围为:35[,]22−.【点

睛】本题主要考查柯西不等式,均值不等式,绝对值不等式的综合应用,意在考查学生的分析能力,计算能力,分类讨论能力,难度中等.

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?