【文档说明】江苏省外国语学校2020-2021学年高二下学期期中调研测试数学试题含答案.docx,共(7)页,537.157 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-c8de64ddc8e45f6c29f85054290f61be.html
以下为本文档部分文字说明:
2020~2021学年第二学期期中调研测试高二数学2021.04一、单项选择题:本大题共小题,每小题分,共计40分,每小题给出的四个选项中,只有一个是正确的,请把正确的选项填涂在答题卡的相应位置上。1.函数3()2lnfxxxx=++的单调递区间为()A.(0,3)B.(0,1
)C.(1,3)D.(3,)+2.用数字0,1,2,3可以组成无重复数字的四位偶数有()A.12个B.10个C.20个D.16个3.函数1()sin2fxxx=−的大致图象可能是()A.B.C.D.4.在
12nxx−的展开式中,只有第5项的二项式系数最大,则展开式中x的系数为()A.7−B.358−C.358D.75.已知函数2()fxx=的图象在1x=处的切线与函数e()xgxa=的图象相切,则实数a=()A.eB.ee2C.e2D.ee6.将编号为1,
2,3,4,5,6,7的小球放入编号为1,2,3,4,5,6,7的七个盒子中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为()A.315B.640C.840D.50407.
已知函数21()exfx−=,1()ln2gxx=+,若()()fmgn=,则mn−的最大值是()A.ln212+−B.1e2−C.ln(2e)2D.1e2−−8.已知21001210()gxaaxaxax=++++,290129()hxbbxbxbx=++++,若1
9(1)(12)xx+−=10(1)()()xgxhx−+,则9a=()A.192B.19102C.18102−D.1832−二、多项选择题:本题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项符合题目
要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.给定函数()()1xfxex=+.下列说法正确的有()A.函数()fx在区间(,2)−−上单调递减,在区间(2,)−上单调递增B.函数()fx的图象与x轴有两个交点C.当210ae−时,方程(
)fxa=有两个不同的的解D.若方程()fxa=只有一个解,则0a10.下列结论正确的是()A.6本不同的书分给甲、乙、丙三人,每人两本,有222642CCC种不同的分法;B.6本不同的书分给甲、乙、丙三人,其中一人1本,一人2本,一人3本,有123653CCC种不同的分法;C.
6本相同的书分给甲、乙、丙三人,每人至少一本,有10种不同的分法;D.6本不同的书分给甲、乙、丙三人,每人至少一本,有540种不同的分法.11.设6260126(21)(1)(1)(1)xaaxaxax+=+++++++,下列结论正确的是()A.6
012563aaaaa−+−+=B.23100aa+=C.1a,2a,3a,…,6a中最大的是2aD.当999x=时,6(21)x+除以2000的余数是112.已知函数()(1)lnfxxxx=−−,下述结论正确的是()A.()fx存在唯一极值点0x,且0(1,2)x
B.存在实数a,使得()2faC.方程()1fx=−有且仅有两个实数根,且两根互为倒数D.当1k时,函数()fx与()gxkx=的图象有两个交点三、填空题:本题共4小题,每小题5分,共20分.13.二项式612xx+
的展开式中,常数项为___________.14.若函数32()1fxxaxx=−++在(2,)+上单调递增,则实数a的取值范围是___________.15.如图,用五种不同的颜色涂在图中不同的区域内,要求每个区域只能涂一种颜
色,且相邻(有公共边)区域涂的颜色不同,则不同的涂色方案一共有__________种.(用数字作答).16.已知函数1()2lnfxaxxx=−−,若()fx在[1,]e上单调减函数,则实数a的最大值为_________.若0a,在[1,]e上至少
存在一点0x,使得()0020efxx−成立,则实数a的最小值为___________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)已知函数2()xfxe
xa=−+,xR的图象在点0x=处的切线为ybx=.(1)求函数()fx的解析式;(2)设2()()gxfxxx=+−,求证:()0gx;18.(本题满分12分)已知从3312nxx−的展开式的所有项中任取两项的组合数是21。(1)求展开式中所有二
项式系数之和2)若323112naxxx+−的展开式中的常数项为72,求a的值。19.按照下列要求,分别求有多少种不同的方法?(列式并用数字作答)(1)5个不同的小球放入4个不同的盒子,每个盒
子至少放一个小球(2)6个不同的小球放入4个不同的盒子,每个盒子至少一个小球;(3)6个相同的小球放入4个不同的盒子,每个盒子至少一个小球;(4)6个不同的小球放入4个不同的盒子,恰有1个空盒.20.(本题满分12分)已知函数()(1)lnafxxaxx=−
−+(aR).(1)当01a时,求函数()fx的单调区间;(2)是否存在实数a,使()fxx恒成立,若存在,求出实数a的取值范围;若不存在,说明理由.21.(本题满分12分)在杨辉三角形中,从第2行开始,除1以外,其它每一个数值是它上面的两个数
值之和,该三角形数阵开头几行如图所示.第0行1第1行11第2行121第3行1331第4行14641第5行15101051第6行1615201561(1)在杨辉三角形中是否存在某一行,使该行中三个相邻的数之比是3:4:5?若存在,试求出是第几行;若不存在,请说明理由;(2)已知n,
r为正整数,且3nr+,求证:任何四个相邻的组合数Crn,1Crn+,2Crn+,3Crn+不能构成等差数列.22.(本题满分12分)已知函数()(ln1)fxxx=−,()gxaxb=+(a,bR).(1)若1a=时,直线()yg
x=是曲线()fx的一条切线,求b的值;(2)若bea=−,且()()fxgx在[,)xe+上恒成立,求a的取值范围;(3)令()()()xfxgx=−,且()x在区间2,ee上有零点,求24ab+的最小值.2020~2021
学年第二学期期中调研测试高二数学参考答案2021.04一、单项选择题:本大题共小题,每小题分,共计40分,每小题给出的四个选项中,只有一个是正确的,请把正确的选项填涂在答题卡的相应位置上。1.B;2.B;3.A;4.D;5.B;6.A;7.A;8.D二、多项选择题:本题共2小题
,每小题5分,共10分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.AC;10.ACD;11.ABD;12.ACD三、填空题:本题共4小题,每小题5分,共20分.13.402;14.
13,4−;15.180;16.(1)221ee+(2)241ee−四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)【解析】(1)2()xfxexa=−+,()2xfxex
=−,························································1分由已知得(0)10(0)1fafb=+===,·······················
·································································2分解得11ab=−=,故2()1xfxex=−−·····································
·········································4分(2)2()()1xgxfxxxex=+−=−−,()10xgxe=−=得0x=.································
····6分当(,0)x−时,()0gx,()gx单调递减;当(0,)x+时,()0gx,()gx单调递增.·································································8分∴min()(0)0
gxg==,从而2()fxxx−+,即()0gx.··············································10分18.解析:3312nxx−的展开式
共有1n+项,由题意得21C21n+=,解得6n=,·················2分所以展开式中所有二项系数之和为6264=.·················································
····················4分(2)由(1)知,6332233111122naxaxxxxx+−=+−3312nxx−的展开式的通项为626331663
11C()C22rrrrrrrTxxx−−+=−=−,···················6分令6203r−=,或2,解得3r=或0r=,·························
·············································8分因为展开式中的常数项为3306617CC22a−+=,··················································
·········10分解得1a=−.············································································································12分19.【解析】(
1)2454CA240=;·····················································································3分(2)2211346421642222CCCCCA1560AA+
=;或342222644642CACCCA1560+=;··································6分(3)24C410+=;或25C10=;············
·······································································9分(4)222321236426315433CCCCCCCA2160A++=
.或()143323222463633642CCACCACCC2160++=.········12分20.【解析】(1)函数()fx的定义域为(0,)+,221()(1)()1aaxaxfxxxx+−−=+−=,·········1分21.【解析】(1
)存在.··································································································1分杨辉三角形的第n行由二项式系数Ckn,0k=,1,2,…,n组成
.若第n行中有三个相邻的数之比为3∶4∶5,则1C3C14knknknk−==−+,1C14C5knknknk++==−,·····························································
·····3分即373nk−=−,495nk−=,解得27k=,62n=.即第62行有三个相邻的数2662C,2762C,2862C的比为3∶4∶5.················································5分(2)证明若有n
,r(3nr+),使得Crn,1Crn+,2Crn+,3Crn+成等差数列,则122CCCrrrnnn++=+,2132CCCrrrnnn+++=+,·················································
··················6分即2!!!(1)!(1)!!()!(2)!(2)!nnnrnrrnrrnr=++−−−+−−,2!!!(2)!(2)!(1)!(1)!(3)!(3)!nnnrnrrnrrn
r=++−−+−−+−−··············································7分所以211(1)(1)()(1)(1)(2)rnrnrnrrr=++−−−−−++,211(2)(2)(2)(1)(2)(3)rnrnrnr
rr=++−−−−−−++整理得2(45)4(2)20nrnrr−++++=,2(49)4(1)(3)20nrnrr−+++++=.两式相减得23nr=+,·····································································
·························9分所以23Crr+,123Crr++,223Crr++,323Crr++成等差数.··································································10分由二项式系数的性
质可知31223232323CCCCrrrrrrrr+++++++==.···················································11分这与等差数列的性质矛盾,从而要证明的结论成立.···
·······················································12分22.【解析】(1)当1a=时,()gxxb=+,()lnfxx=,设切点()()00,
Axfx,则()fx在点A处的切线为()()0000ln1lnyxxxxx−−=−,·············································2分化简得()00lnyxxx=−,因为()gxxb=+是()fx的一条切
线,0ln1x=,0xb−=,解得0xe=,be=−;···································································3分(2)当bea=
−时,令()()()(ln1)()hxfxgxxxaxe=−=−−−,则()lnhxxa=−.············4分若1a,则当xe时,()0hx恒成立,()hx在[,)e+上单调递增,()()0
hxhe=,即()()fxgx符合题意;···································································5分若1a时,由()0hx=,得axee=,当1axe时,()0hx,()hx在,aee
上单调递减,()()0hxhe=,与已知()hx在[,)xe+上恒成立矛盾,舍去.········································6分综上,1a且0a.······
····························································································7分(3)()(ln1)xxx
axb=−−−,()lnxxa=−.若1a,则()0x在区间()2,ee上恒成立,()x在区间2,ee上单调递增,因为()x在区间2,ee上有零点,所以()222()00eaebeeaeb=−−
=−−,解得22aebeae−−.······················································································
········8分所以222244(2)414abaaeaeee+−=−−−,当1a=时,等号成立,此时bae=−.············································
·································9分若12a时,当aexe时,()0x,()x在()1,ae上单调递减,当2aexe时,()0x,()x在()1,ae上单调递增.因为()x在区间2,ee上有零点,所以(
)(1)0aaaaeeaaebeb=−−−=−−,所以abe−,所以2244aabae+−,·······································································10分令2()4ahaa
e=−,12a,则()()24220aahaaeae=−=−,所以()ha在(2)上单调递减.所以222()2444haee−=−.若2a,则()0x在区间()2,ee上恒成立,()x在区间2,ee上单调递减.因为叫()x在区间2,ee上有零点,所以()
222()00eaebeeaeb=−−=−−,解得22eaebae−−.··································································································11
分所以()222222242444424444abaaeeaeeeee−+−+=−+−−,当22ae=时,等号成立,此时242bee=−;······································
··························12分综上,24ab+的最小值是2444ee−.当01a时,由()0fx,得0xa,或1x,由()0fx,得1ax,·····
····················································································2分故函数()fx的单调递增区间为(0,)a和(1,)+,单调递减区间为(,1)a,···········
···················4分当1a=时,22(1)()0xfxx−=恒成立,故函数()fx的单调递增区间为(0,)+.···················5分(2)()fxx恒
成立等价于(1)ln0aaxx++恒成立,令()(1)lngxaaxx=++,当10a+=时,即当1a=−时,()1gx=−,故()0gx在(0,)+内不能恒成立,················6分当10a+时,即当1a−时,则(1)1ga=−,故()0gx在
(0,)+内不能恒成立,········7分当10a+时,即当1a−时,()(1)(1ln)gxax=++,由()0gx=解得1xe=,···············8分当10xe时,()0gx;当1xe时,()0gx.
······················································10分所以min11()0agxgaee+==−,解得11ae−.····················································
··11分综上,当11ae−时,()0gx在(0,)+内恒成立,即()fxx恒成立,所以实数a的取值范围是1,1e+−.······································
····································12分