【文档说明】新教材数学人教A版必修第一册教案:4.5函数的应用(二) 4.5.1函数的零点与方程的解 含解析【高考】.doc,共(6)页,404.500 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-c2c31766f3a591954ea7ec519fef07d1.html
以下为本文档部分文字说明:
-1-4.5.1函数的零点与方程的解【素养目标】1.结合学过的函数图象,了解函数零点与方程解的关系.(直观想象,数学抽象)2.结合具体连续函数及其图象的特点,了解函数零点存在定理,探索用二分法求方程近似
解的思路并会画程序框图,能借助计算工具用二分法求方程近似解,了解用二分法求方程近似解具有一般性.(逻辑推理,数学运算)3.理解函数模型是描述客观世界中变量关系和规律的重要数学语言和工具.在实际情境中,会选择合适的函数模型刻画现实问题的变化规律.(数学建模)【学法解读】本节在学习中首先
利用方程的解引出函数的零点,体现数学素养中的数学抽象,再把函数的零点、方程的解与函数的图象与x轴交点横坐标三者统一,结合函数的图象及性质会判断函数零点问题,对函数的实际应用问题,学生应学会对问题进行分析,灵活运用所学过的数学知识,建立“量”与“
量”之间的函数关系,把实际问题转化为函数问题,通过对函数问题的解决达到解决实际问题的目的.必备知识·探新知知识点1:函数的零点(1)函数f(x)的零点是使f(x)=0的_________.(2)函数的零点、函数的
图象、方程的根的关系.思考1:(1)函数的零点是点吗?(2)函数的零点个数、函数的图象与x轴的交点个数、方程f(x)=0根的个数有什么关系?提示:(1)不是,是使f(x)=0的实数x,是方程f(x)=0的根.(2)相等.知识点2:函
数的零点存在定理(1)条件:函数y=f(x)在区间[a,b]上的图象是__________________,f(a)f(b)<0;(2)函数y=f(x)在区间(a,b)上有零点,即存在c∈(a,b)使f(c)=0,这个c也就是f(x)=0的根.思考2:
(1)函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,f(a)f(b)<0时,能否判断函数在区间(a,b)上的零点个数?(2)函数y=f(x)在区间(a,b)上有零点,是不是一定有f(a)f(b)<0?提示:(1)只能判断有无零点,不能判断零点
的个数.(2)不一定,如f(x)=x2在区间(-1,1)上有零点0,但是f(-1)f(1)=1×1=1>0.基础检测-2-[解析](1)令x2-5x-6=0,得(x-6)(x+1)=0,∴x1=-1,x2=6,∴函数f(x)的零点为-1
,6.(2)令x3-7x+6=0,得x3-x-6x+6=0,∴x(x+1)(x-1)-6(x-1)=0,∴(x-1)(x2+x-6)=0,∴(x-1)(x+3)(x-2)=0,∴x1=-3,x2=1,x3=2.∴函数f(x)的零点为-3,1,2.-3-关键能力·攻重难题型一求函数的零点(方程的根)
(3)令4x+5=0,显然方程4x+5=0无实数根,所以函数f(x)不存在零点.(4)令log3(x+1)=0,解得x=0,所以函数f(x)存在零点,且零点为x=0.[归纳提升]1.正确理解函数的零点:(1)函数的零点是一个实数,当自变
量取该值时,其函数值等于零.(2)根据函数零点定义可知,函数f(x)的零点就是f(x)=0的根,因此判断一个函数是否有零点,有几个零点,就是判断方程f(x)=0是否有实根,有几个实根.即函数y=f(x)的零点⇔方程f(x)=0的实根⇔函数y=f(x)的图象与x轴交点
的横坐标.2.函数零点的求法:(1)代数法:求方程f(x)=0的实数根.(2)几何法:与函数y=f(x)的图象联系起来,图象与x轴的交点的横坐标即为函数的零点.【对点练习】❶(1)求下列函数的零点:①f(x)=x2-2x-3零点为__________;②g(x)=lgx+2零
点为______.(2)已知-1和4是函数f(x)=ax2+bx-4的零点,则f(1)=_______.[解析](1)①f(x)=(x-3)·(x+1),令f(x)=0,得x1=-1,x2=3,∴f(x)的零点为3和-1,-4-题型二判断零点所在的区间例题2(2020·江西宜
丰中学高一期末测试)函数f(x)=lnx+x3-9的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)[分析]根据函数零点的存在性原理判断函数零点所在的区间.[解析]f(1)=1-9=-8<0,f(2)=ln2+8-9=l
n2-1<0,f(3)=ln3+27-9=ln3+18>0,∴f(2)·f(3)<0,∴函数f(x)的零点所在的区间为(2,3).[归纳提升]判断函数零点所在区间的方法:一般而言判断函数零点所在区间的方法是将区间端点代入函数求出函数的值,进行符号判
断即可得出结论.此类问题的难点往往是函数值符号的判断,可运用函数的有关性质进行判断.【对点练习】❷函数f(x)=ex+x-2的零点所在的一个区间是()A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)题型三函数零点个数的判断例题3函数f(x)=(x-2)(x-5)-1有两个零
点x1,x2,且x1<x2,则()A.x1<2,2<x2<5B.x1>2且x2>5C.x1<2,x2>5D.2<x1<5,x2>5[分析]f(x)的图象是由g(x)=(x-2)(x-5)的图象向下平移1个单位得到的,由g(x)的零点可判断x1,x2的取值范围.-5-[归纳提升]判断
函数y=f(x)的零点的个数的方法(1)解方程法,方程f(x)=0的实数根的个数就是函数f(x)的零点的个数.(2)借助函数的单调性及函数零点存在定理进行判断.(3)如果函数图象易画出,则可依据图象与x轴的交点的个数来判断.特别地,对于
形如y=h(x)-g(x)的函数,可依据函数h(x)与g(x)的图象的交点的个数来判断函数y=h(x)-g(x)的零点的个数.题型四一元二次方程根的分布问题例题4(2020·天津市河西区高一期末测试)已知函数f(x)=x
2+2mx+3m+4.(1)若f(x)有且只有一个零点,求实数m的值;(2)若f(x)有两个零点,且均比-1大,求m的取值范围.[分析](1)f(x)有且只有一个零点,即方程x2+2mx+3m+4=0有两个相等实数根;(2)f(x)有两个零点,且均比-1
大,即方程x2+2mx+3m+4=0在(-1,+∞)上有两个实数根.-6-【对点练习】❹若方程kx2-(2k+1)x-3=0的两根x1,x2满足-1<x1<1<x2<3,求实数k的取值范围.