【文档说明】上海市致远高级中学2020-2021学年高二下学期5月阶段评估数学试题 含答案.docx,共(9)页,678.396 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-bf1db613ca6ad080743495fc94a7cc9a.html
以下为本文档部分文字说明:
致远高中2020学年第二学期5月阶段评估高二数学一、填空题(1-6每小题4分,7-12每小题5分)1.若复数z=1-i(i为虚数单位),则z2的共轭复数为________.2.双曲线1222=−yx的渐近线方程为___________.3.球的
表面积为16cm2元则球的体积为______cm3.4.直线y=x+1被曲线1212−=xy截得的线段AB的长为_____.5在正四棱柱ABCD-A1B1C1D1中,BC与平面ABCD所成的角为60°,则BC1与AC所成的角为___________.(结
果用反三角函数表示)6.某圆锥体的侧面展开图是半圆,当侧面积是32时,则该圆锥体的体积是_______.7.在7)2(xx−的展开式中,5x的系数是________.(用数字作答)8.求和:.______327933
21=++++nnnnnnCCCC9.设F1,F2是双曲线12422=−yx的两个焦点,P是双曲线上的一点且2143PFPF=,则△PF1F2的周长________.10.亚运会组委会要从小张、小赵、小李、小罗、
小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中少张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有________种.11已知S、A、B、C是球O表面上的点,S
A⊥平面ABC,AB⊥BC,SA=1,AB=BC=2,则球O的表面积为_______.12.设圆C位于抛物线y2=2x与直线x=3所围成的封闭区域(包含边界)内,则圆C的半径能取到的最大值为__________.二、选择题(每小题5分)13若z∈C,下列命题中,
正确的命题是()A.111−zzB.=+0zzz是纯虚数C.22zz=D.02zz是实数14.若l、m、n为直线,、、为平面,则下列命题中为真命题的是()A.若m//,m//,则//B.若m⊥,n⊥,则m//nC.若⊥
,⊥,则⊥D.若⊥,l,则⊥l5.直线x+y=a与圆122=+yx交与不同的两点),,(),,(2211yxByxA若ayyxx=+2121,则实数a的值是()A.251B.251−
C.251+D.251+−16.在直角坐标系中,设A(3,2).B(-2,3)沿着y轴将直角坐标平面折成120°的二面角后,AB长为()A.6B.24C.25D.112三、解答题(14+14+16+14+18=76分)17.已知复数iaaz)3(2321−++=,iaz)13(22++=
(a∈R,i是虚数单位)。(1)若复数21zz−在复平面上对应点落在第一象限,求实数a的取值范围;(2)若虚数1z是实系数一元二次方程x2-6x+m=0的根,求实数m的值.18.求解方程3154101+=+xxxPCC19.在底
面为直角梯形的四棱锥P-ABCD中,AD//BC,∠ABC=90°,PA⊥平面ABCDPA=3,AD=2,AB=23,BC=6.(1)求直线PB与平面ABCD所成的角的大小.(2)求证:BD⊥平面PAC;(3)求二面角P-BD-A的大小。20
.如图,在平面直角坐标系xoy中,M、N分别是椭圆12422=+yx的顶点.过坐标原点的直线交椭圆于A、B两点,其中A在第一象限.过点A作x轴的垂线,垂足为C.设直线AB的斜率为k.(1)若直线AB平分线段MN,求k的值;(2)当k=2时,求点A到直线BC
的距离.21.已知F1、F2为双曲线C:12222=−byax的两个焦点,焦距21FF=6,过左焦点F1垂直于x轴的直线,与双曲线C相交于A,B两点,且△ABF2为等边三角形,(1)求双曲线C的方程;(2)设T为直线x=1上任意一点,过右焦点F2作TF2的垂线交双曲线C与P,
Q两点,求证:直线0T平分线段PQ(其中O为坐标原点);(3)是否存在过右焦点F2的直线l,它与双曲线C的两条渐近线分别相交于R,S两点,且使得△F1RS的面积为62?若存在,求出直线l的方程:若不存在,请说明理由。答案1.2i2.xy2=3.3324.1025.42arccos6
.33647.-148.4n-19.2410.3611.912.16−13.D14.B15.B16.C17.(1)(-2,-1);(2)m=1318.x=619.(1)721arcsin;(2)见解析;(3)见解析2021