【文档说明】江苏省南京市六校联合体2024-2025学年高二上学期10月月考试题 数学 PDF版含答案(可编辑).pdf,共(9)页,484.562 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-bd4884e184967de12e6aa63152e343d4.html
以下为本文档部分文字说明:
试卷第1页,共4页2024-2025学年第一学期10月六校联合调研试题高二数学本试卷共4页,19题.全卷满分150分.考试用时120分钟.一、单项选择题:本题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一项符合题目要
求.1.已知复数z满足(12)34iiz,则||z()A.3B.5C.3D.52.设a为实数,已知直线1l:320axy,2l:6340xay,若12//ll,则a()A.6B.
-3C.6或-3D.-6或33.已知焦点在x轴上的椭圆2213xym的焦距为6,则实数m等于()A.34B.214C.12D.12634.已知cos2sin()4,则πtan4(
)A.3B.3C.3D.35.设直线20xay与圆22:216Cxy相交于A,B两点,且ABC的面积为8,则a()A.2B.1C.1D.26.已知M为直线:2310lxy上的动
点,点P满足2,4MP,则点P的轨迹方程为()A.3290xyB.2249(2)(4)13xyC.2390xyD.2249(2)(4)13xy7.如图,两个相同的正四棱台密闭容器内装有纯净水,118,2ABAB
,图1中水面高度恰好为棱台高度的12,图2中水面高度为棱台高度的23,若图1和图2中纯净水的体积分别为12,VV,则12VV(){#{QQABLQQEoggoABAAAAhCAQ1yCAOQkhGAAagOhBAEsAAASANABAA=}#}试
卷第2页,共4页A.23B.65C.287208D.3872088.关于椭圆有如下结论:“过椭圆222210xyabab上一点00,Pxy作该椭圆的切线,切线方程为00221xxyyab.”设椭圆C:2222
10xyabab的左焦点为F,右顶点为A,过F且垂直于x轴的直线与C的一个交点为M,过M作椭圆的切线l,若切线l的斜率1k与直线AM的斜率2k满足0221kk,则椭圆C的离心率为()A.13B.33C.2
3D.22二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.国庆期间,某校开展“弘扬中华传统文化,传承中华文明”主题活动知识竞赛.赛前为了解学生的备赛情况,组织对高一年级和高二年级学生的
抽样测试,测试成绩数据处理后,得到如下频率分布直方图,则下面说法正确的是()A.a=0.025B.高一年级抽测成绩的众数为75C.高二年级抽测成绩的70百分位数为87D.估计高一年级学生成绩的平均分低于高二年级学生成绩的平均分10.
已知m,n是两条不同的直线,,是两个不同的平面,则下列说法正确的是()A.若//,//m,n,则mnB.若//,m,n,则//mnC.若m,//n,//mn,则D.若,m,n,则mna{#{QQABLQQEoggoA
BAAAAhCAQ1yCAOQkhGAAagOhBAEsAAASANABAA=}#}试卷第3页,共4页11.已知圆C:22(2)4xy,以下四个命题表述正确的是()A.若圆221080xyxym与圆C恰有3条公切线,则m=16B.圆2220xyy与圆C的公共弦所在直线
为20xyC.直线(21)(32)530mxmym与圆C恒有两个公共点D.点P为y轴上一个动点,过点P作圆C的两条切线,切点分别为A,B,且A,B的中点为M,若定点N(5,3),则MN的最大值为6三、填空题:本题共3小题,每小题5分,共15分.请把答
案直接填写在答题卡相应位置上.12.从分别写有5,4,3,2,1的五张卡片中任取两张,则抽到的两张卡片上的数字之和是3的倍数的概率为.13.已知P为椭圆C:22+194xy上的点,A(1,0),则线段PA长度的最小值为.14.已知0,2A,10B,,,0Ct,点D是直线A
C上的动点,若3ADBD≤恒成立,则正整数t的最小值是.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)记ABC的内角A,B,C的对边分别为a,b,c,且b
sin2A=asinB.(1)求角A;(2)若7a,ABC的面积为332,求ABCV的周长.16.(本小题满分15分)如图,圆柱1OO中,PA是一条母线,AB是底面一条直径,C是AB的中点.(1)证明:平面P
AC平面PBC;(2)若24PAAB,求二面角APBC的余弦值.{#{QQABLQQEoggoABAAAAhCAQ1yCAOQkhGAAagOhBAEsAAASANABAA=}#}试卷第4页,共4页17.(本小题满分15分)某校为了厚植文化自信、增强学生的爱国情
怀,特举办“中国诗词精髓”知识竞赛活动,比赛中只有A,B两道题目,比赛按先A题后B题的答题顺序各答1次,答对A题得2分,答对B题得3分,答错得0分.已知学生甲答对A题的概率为p,答对B题的概率为q,其中01p,01q,学生乙答对A题的概率为43,答对B题的概率为
32,且甲乙各自在答A,B两题的结果互不影响.已知甲比赛后得5分的概率为13,得3分的概率为16.(1)求p,q的值;(2)求比赛后,甲乙总得分不低于8分的概率.18.(本小题满分17分)已知圆M过点)3,3(A,圆心M在直线250xy
上,且直线250xy与圆M相切.(1)求圆M的方程;(2)过点(0,2)D的直线l交圆M于A,B两点.若A为线段DB的中点,求直线l的方程.19.(本小题满分17分)已知椭圆2222:1(0)xyCabab的
离心率为12,1A、2A分别为椭圆C的左、右顶点,1F、2F分别为椭圆C的左、右焦点,126AF.(1)求椭圆C的方程;(2)设与x轴不垂直的直线l交椭圆C于P、Q两点(P、Q在x轴的两侧),记直线1AP,2AP,2AQ,1AQ的斜率分别为1k,2k,3k,4k.(i)求12kk的值
;(ii)若142353kkkk,问直线PQ是否过定点,若过定点,求出定点;若不过定点,说明理由.{#{QQABLQQEoggoABAAAAhCAQ1yCAOQkhGAAagOhBAEsAAASANABAA=}#}试卷第1页,
共5页2024-2025学年第一学期10月六校联合调研参考答案及评分标准高二数学一、单项选择题1、B2、A3、C4、B5、C6、C7、D8、C二、多项选择题9、ABD10、AC11、BCD三、填空题12、5213、55414、4四、解答题15解:(1)因为bs
in2A=asinB,所以2bsinAcosA=asinB.根据正弦定理,得2sinBsinAcosA=sinAsinB,………………2分因为sinB≠0,sinA≠0,所以cosA=12.…………………4分又A∈(0,π),所以A=π3.…………………6分(
2)在ABCV中,由已知11333sin,62222ABCSbcAbcbc,············8分因为π3A,7a由余弦定理可得2222cosabcbcA,即217222bcbcbc
,··············10分即273bcbc,又0,0bc所以5bc.所以ABCV的周长周长为57.······························································
······13分16解:(1)证明:因为PA是一条母线,所以PA平面ABC,而BC平面ABC,则PABC,···································································2分因为AB是底面一条直径
,C是AB的中点,所以90ACB,即ACBC,··········4分又,PAAC平面PAC且PAACA,所以BC平面PAC,而BC平面PBC,则平面PAC平面PBC.·······················6分{#{QQABLQQEoggoABAAAA
hCAQ1yCAOQkhGAAagOhBAEsAAASANABAA=}#}试卷第2页,共5页(2)设24PAAB,则25PB,因为C是AB的中点,O为底面圆心,所以COPAB平面,作OEPB,交PB于点E连接CE,由OEPB,CEPB可知,CEO是
二面角APBC的平面角.·······················10分则PBOEPABO,即425525OE,在直角COE中,22355CEOCOE.所以25co25s3355CEO.故二面角APBC的余弦
值为23.··································································15分17解:(1)由题意得61)1(31qppq,·····················
··········································4分解得21,32pq.··············································
············································6分(2)比赛结束后,甲、乙个人得分可能为0,2,3,5.记甲得分为i分的事件为0,2,3,5iCi,乙得分
为i分的事件为0,2,3,5iDi,,iiCD相互独立,记两轮投篮后甲总得分不低于8分为事件E,则355355ECDCDCD,且35CD,53CD,55CD彼此互斥.易得P(C3)=16,··································
······················································8分P(D3)=6132)431(,P(C5)=13,P(D5)=213243,所以355355355355()(
)()()PEPCDCDCDPCDPCDPCD()=3611213161312161.所以两轮投篮后,甲总得分不低于8分的概率为3611.······································
···15分{#{QQABLQQEoggoABAAAAhCAQ1yCAOQkhGAAagOhBAEsAAASANABAA=}#}试卷第3页,共5页18解:(1)法1:(待定系数法)设圆M的方程为222xaybr,因为圆M过点)3,3(A,所以222
33abr①,······································2分又因为圆心M在直线250xy上,所以250ab②,·······························4分直线250xy与圆
M相切,得到255abr③,·······································6分由①②③解得:2a,1b,5r因此圆M的方程为22(2)(1)5xy.·······7分法2:(几何性质)因为直线250xy
与直线250xy垂直,又因为圆心M在直线250xy上,联立方程250250xyxy,解得13xy·········4分设两直线的交点为)3,1(B,由圆的几何性质,点)3,1(B在圆上,且为直线与圆的切点,又因为圆M过点)3,3(A,且所以圆心
M在直线2x上,又圆心M也在直线250xy上,联立方程2250xxy,解得21xy,故圆心(2,1)M,····································6分所以
半径5rAM,因此圆M的方程为22(2)(1)5xy.······················7分(2)设(,)Axy,因为A为线段BD的中点,所以(2,22)Bxy,因为A,B在圆M上,所以
5)12()22(5)1()2(2222yxyx,解得00yx或1316-1324yx········12分当)0,0(A时,直线l的方程为0x;···
·························································14分当)1316-,1324(A时,故直线l的方程为2125xy,即024125yx.··················16分综
上,直线l的方程为0x或024125yx.···············································17分{#{QQABLQQEoggoABAAAAhCAQ1yCAOQkhGAAagOhBAEsAAA
SANABAA=}#}试卷第4页,共5页19解:(1)由于椭圆2222:1(0)xyCabab的离心率为12,故12ca,又216AFac,所以4a,2c,22212bac,所以椭圆C的方程为22
11612xy.······································································4分(2)(i)设l与x轴交点为D,由于直线l交椭圆C于P、Q两点(P、Q在x轴的两侧),故直线l的的斜率不为0,直
线l的方程为xmyt,联立2211612xmytxy,则222(34)63480tymtym,则2248(1216)0tm,设11(,)Pxy,22(,)Qxy,则122634mtyyt,212234834myyt
,······························6分又1(4,0)A,2(4,0)A,故122211111222111134444163PAPAyyyykkkkxxxy,··
···································10分(ii)由(i)得123434QAQAkkkk.因为142353kkkk,则2323335()443kkkk,23232335()43kkkkkk.又
直线l交与x轴不垂直可得230kk,所以23920kk,即22920PAQAkk.········13分所以121294420yyxx,1212209(4)(4)0yytymtym,于是221212(920)9(4))(9(4)0tyytmyym
,222226(920)9(4)9(4)03483434mttmmtttm,整理得2340mm,解得1m或4m,·········································
·········15分{#{QQABLQQEoggoABAAAAhCAQ1yCAOQkhGAAagOhBAEsAAASANABAA=}#}试卷第5页,共5页因为P、Q在x轴的两侧,所以2122348034my
yt,44m,························16分又1m时,直线l与椭圆C有两个不同交点,因此1m,直线l恒过点(1,0)D.·······················
·········································17分{#{QQABLQQEoggoABAAAAhCAQ1yCAOQkhGAAagOhBAEsAAASANABAA=}#
}