【文档说明】江苏省南京市2023-2024学年高二上学期期中学情调研测试+数学+含答案.docx,共(12)页,85.075 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-8e7cc006370afe92655ac08f83a7415e.html
以下为本文档部分文字说明:
南京市2023-2024学年度第一学期期中调研测试高二数学2023.11注意事项:1.本试卷共6页,包括单项选择题(第1题~第8题)、多项选择题(第9题~第12题)、填空题(第13题~第16题)、解答题(第17题~第22题)四部分.本试卷满
分为150分,考试时间为120分钟.2.答卷前,考生务必将自己的学校、姓名、考生号填涂在答题卡上指定的位置.3.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上指定位置,在其他位置作答
一律无效.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某工厂生产A,B,C三种不同型号的产品,它们的产量之比为2:3:5,用分层抽样的方法抽取一个容量为n的样本.若样本中A型号的产品有20件,则样本容量n为
A.50B.80C.100D.2002.已知复数z0=3+i,其中i为虚数单位,复数z满足zz0=3z+z0,则z=A.1-3iB.1+3iC.3+iD.3-i3.已知圆C1:x2+y2-x-ay=0与圆C2:x2+y2-2x-4y+2=0的公共弦所在直线与x轴垂直,则实数a的值为
A.-4B.-2C.2D.44.《数书九章》天池测雨:今州郡都有天池盆,以测雨水.但知以盆中之水为得雨之数.不知器形不同,则受雨多少亦异,未可以所测,便为平地得雨之数,即平地降雨量等于盆中积水体积除以盆口面积.假令器形为圆台,盆口径(直径)一尺四寸,底径(直径)六寸、深一尺二寸,
接雨水深六寸(一尺等于十寸),则平地降雨量为A.1B.2C.3D.45.已知cosx+sinx=23,则sin2xcos(x-π4)=A.-716B.-726C.-76D.-736.在平面直角坐标系xOy中,已知双曲线C:
x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,A为双曲线右支上一点,连接AF1交y轴于点B.若△ABF2为等边三角形,则双曲线C的离心率为A.23B.32C.3D.3327.在平面直角坐标系xOy中,P为直线3x+4y+1=0上一点.若向量a=(3,4),则向量
OP→在向量a上的投影向量为A.-15B.(-35,-45)C.(-325,-425)D.无法确定8.已知函数f(x)=sin(ωx+φ)(ω>0).若x∈R,f(x)≤f(π3),且f(x)在(0,π)上恰有1
个零点,则实数ω的取值范围为A.(0,32]B.(34,32]C.(34,94]D.(32,94]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的
得0分.9.某研究小组依次记录下10天的观测值:26,28,22,24,22,78,32,26,20,22,则A.众数是22B.80百分位数是28C.平均数是30D.前4个数据的方差比最后4个数据的方差小10.声音是由物体的振动产生的声波,一个声
音可以是纯音或复合音,复合音由纯音合成,纯音的函数解析式为y=Asinωx.设声音的函数为φ(x),音的响度与φ(x)的最大值有关,最大值越大,响度越大;音调与φ(x)的最小正周期有关,最小正周期越大声音越低沉.假设
复合音甲的函数解析式是f(x)=sinx+12sin2x,纯音乙的函数解析式是g(x)=32sinωx(ω>0),则下列说法正确的有A.纯音乙的响度与ω无关B.纯音乙的音调与ω无关C.若复合音甲的音调比纯音乙的音调低沉,则ω>1D.复合音甲的响度与纯音乙的响度一样大11.在
平面直角坐标系xOy中,抛物线C:y2=4x的焦点为F,A(x1,y1),B(x2,y2),D(x3,y3)为抛物线C上的任意三点(异于O点),FA→+FB→+FD→=0,则下列说法正确的有A.设A,B到直线x
=-1的距离分别为d1,d2,则d1+d2<ABB.FA+FB+FD=6C.若FA⊥FB,则FD=ABD.若直线AB,AD,BD的斜率分别为kAB,kAD,kBD,则1kAB+1kAD+1kBD=012.在长方体ABCD−A1B1C1D1中,AB=8,AD=6,点E是正方形BCC
1B1内部或边界上异于点C的一点,则下列说法正确的有A.若D1E∥平面ABB1A1,则EC1CB.设直线D1E与平面BCC1B1所成角的最小值为θ,则tanθ=223C.存在EBB1,使得∠D1EC>π2D.若∠D1EC=π2,
则EB的最小值为35-3三、填空题:本题共4小题,每小题5分,共20分.13.在平面直角坐标系xOy中,已知点M(2,3)和N(4,0),点Q在x轴上.若直线MQ与直线MN的夹角为90°,则点Q的坐标为▲________.1
4.在△ABC中,AB=36,∠ABC=45°,∠BAC=75°,D是射线BC上一点,且CD=10,则AD=▲________.15.某商场为了促销,每天会在上午和下午各举办一场演出活动,两场演出活动相互独立.每个时段演出的概率分别如下:若某顾客打算第二天11
:00抵达商场并逛3.5小时后离开,则他当天能观看到演出的概率为▲________.16.已知向量a=(1,3),b=(1,0),|a-c|=12,则向量b,c最大夹角的余弦值为▲________.上午演出时段9:00-9:3010:00-10:3011:00-11:30下午演出时段
14:00-14:3015:00-15:3016:00-16:30相应的概率161213四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知函数f(x)=sinxcosx-sin2x+t(x∈R)的
最大值为22.(1)求f(x)的解析式;(2)若x∈[π12,π2],f(x)-m≤0,求实数m的最小值.18.(本小题满分12分)在平面直角坐标系xOy中,已知圆C的圆心在l:x-2y=0上,且圆C与x轴相切,直线l1:x-ay=0(a
∈R),D(6,0).(1)若直线l1与圆C相切,求a的值;(2)若直线l1与圆C相交于A,B两点,将圆C分成的两段弧的弧长之比为1∶3,且DA=DB,求圆C的方程.19.(本小题满分12分)如图,一个质地均匀的正二十面体骰子的各面上标有数字0~9这10
个数字(相对的两个面上的数字相同),抛掷这个骰子,并记录下朝上一面(与地面或桌面平行)的数字.记事件A1为“抛两次,两次记录的数字之和大于16”,记事件A2为“抛两次,两次记录的数字之和为奇数”,事件A3为“抛两次,第一次记录的数字为奇数”.(1)求P
(A1),P(A2);(2)判断事件A1A2与事件A3是否相互独立,并说明理由.(第19题图)20.(本小题满分12分)在△ABC中,a,b,c分别为角A,B,C所对的边,AB→·AC→=b2-12ab.(1)求角C的大小;(2)若△ABC的面积为32,且CM→=
2MB→,AN→=3NM→,求|CN→|的最小值.21.(本小题满分12分)如图,在所有棱长都等于1的三棱柱ABC-A1B1C1中,∠ABB1=π2,∠B1BC=π3.(1)证明:A1C1⊥B1C;(2)求直线BC与平面ABB1A1所成角的大小.22.(本小
题满分12分)在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,且焦距为23,椭圆C的上顶点为B,且BF1→·BF2→=-2.(1)求椭圆C的方程;(2)若直线l过点A(2,-1),且与椭圆C交于M,N两点(不与B重合),直线BM与直线BN
分别交直线x=4于P,Q两点.判断是否存在定点G,使得点P,Q关于点G对称,并说明理由.ABB1A1C1C(第21题图)南京市2023-2024学年度第一学期期中学情调研测试高二数学参考答案2023.11一、选择题:本大题共8小题,每小题5分,共40分.在每小题
给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上.1.C2.A3.D4.B5.D6.C7.C8.B二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,请把答案填涂在答题卡相应位置上.全部选对得5分,
部分选对得2分,不选或有错选的得0分.9.ACD10.AC11.BCD12.ABD三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上.13.(12,0)14.1415.4916.15-38四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要
的文字说明,证明过程或演算步骤.17.(本小题满分10分)解:(1)f(x)=sinxcosx-sin2x+t=12sin2x-1-cos2x2+t···············································
·2分=12sin2x+12cos2x-12+t=22sin(2x+π4)-12+t.············································4分因为f(x)的最大值为22,所以22-12+t=22,解得t=12,所以f(x)=22sin(2
x+π4).·················································································6分(2)由(1)可知f(x)=22sin(2x+π4),当x∈[π12,π2]时,5π12≤2x+π4≤5
π4,当2x+π4=π2时,即x=π8时,f(x)max=22.····························································8分因为f(x)-m≤0恒成立,所以m≥f(x)ma
x恒成立,即m≥22恒成立,因此m的最小值为22.··················································································10分18.(本小题满分12分)解:(1)因
为圆心C在直线l上,可设C(2m,m),m≠0.因为圆C与x轴相切,所以r=|m|.························································2分又因为直线l1与圆C相切,所以|m|=|2m-am
|a2+1.······································4分因为m≠0,解得a=34.··········································································
········5分(2)因为A,B把圆C分成的两段弧长之比为1∶3,所以弦AB所对劣弧圆心角为2π×14=π2,····························································6分所以圆心C到l1的距离d等于圆C半径的22倍,即22|m|=
|2m-am|a2+1,由(1)得m≠0,解得a=1或a=7.·······························································8分又因为DA=DB,所以AB的垂直平分线经过D(6,0)和圆
心C(2m,m),所以m2m-6=-a,··················································································
·······10分所以,当a=1时,m=2,圆C方程为(x-4)2+(y-2)2=4,当a=7时,m=145,圆C方程为(x-285)2+(y-145)2=19625.·························12分19.(本小题满分12分)解:
若用(i,j)表示第一次抛掷骰子数字为i,用j表示第二次抛掷骰子数字为j,则样本空间Ω={(i,j)|0≤i≤9,0≤j≤9,i,j∈Z},共有100种等可能的样本点.············1分(1)A1
={(8,9),(9,8),(9,9)},························································2分所以P(A1)=3100.····························
·························································4分因为A2={(0,1),(0,3)…(9,8)}共有50个样本点,所以P(A2)=50100=12.·····
···········································································6分(2)因为A1A2={(8,9),(9,8)},所以P(A1A2)=2100=150.········
··························8分因为A3={(1,0),(1,1)…(9,9)},共有50个样本点,所以P(A3)=50100=12.······················································
································9分因为A1A2A3={(9,8)},所以P(A1A2A3)=1100.····················································10分因为P(A1A2)P(A3)=150×12=P(
A1A2A3),所以事件A1A2与事件A3独立.········································································12分20.(本小题满分12分)解:(1)方法1因为AB→·AC→=b2-12ab,所以bcco
sA=b2-12ab.···················································2分由余弦定理得bc×b2+c2-a22bc=b2-12ab,化简得b2+a2-c22ab=12,所以cosC=12.··
···················································································4分因为C为△ABC内角,所以C=π3
.···································································5分方法2因为AB→·AC→=b2-12ab,所以bccosA=b2-12ab.···········
·······································2分由正弦定理得sinBsinCcosA=sin2B-12sinAsinB.因为B为△ABC内角,所以sinB≠0,所以sinCcosA=sinB-12sinA.因为A+B+C=π,所以
sinCcosA=sin(A+C)-12sinA,即sinCcosA=sinAcosC+cosAsinC-12sinA,化简得sinAcosC=12sinA.因为A为△ABC内角,所以sinA≠0,所以cosC=12.····················
·············4分因为C为△ABC内角,所以C=π3.···································································5分(2)因为S△ABC=12absinC=32,所以ab=2.···········
··········································6分因为CM→=2MB→,AN→=3NM→,所以CN→=CA→+AN→=CA→+34AM→=CA→+34(CM→-CA→)=14CA→+34CM→=14CA→+12CB→,······
······················································8分从而|CN→|2=(14CA→+12CB→)2=116b2+14a2+14CA→·CB→=116b2+14a2+14················
···························································10分≥2116b2×14a2+14=34.当且仅当116b2=14a2,即a=1,b=2时取等号.所以|C
N→|的最小值为32.················································································12分21.(本小题满分12分)
(1)证明:连接AB1,在△ABB1中,∠ABB1=π2,AB=BB1=1,所以AB1=2,在△BCB1中,∠B1BC=π3,BC=BB1=1,所以B1C=1,所以在△ACB1中,AB1=2,B1C=1,AC=1,所以AB1
2=AC2+B1C2,所以AC⊥B1C.···························································································2
分又因为在三棱柱ABC-A1B1C1中,AC∥A1C1,所以A1C1⊥B1C.·······································································
··················4分(2)方法1解:连接AB1,A1B,交于点O,连接BC1,连接CO.在边长都为1的正方形A1ABB1中,O是AB1的中点,又因为B1C=AC=1,所以CO⊥AB1.······
··········································································6分因为四边形B1BCC1边长都为1,所以B1C⊥BC1.由(1)知B
1C⊥A1C1.又因为A1C1∩BC1=C1,A1C1,BC1平面A1BC1,所以B1C⊥平面A1BC1.因为A1B平面A1BC1,所以B1C⊥A1B.因为在边长都为1的四边形A1ABB1中,A1B⊥AB1.又因为AB1∩B1C=B1,A
B1,B1C平面AB1C,所以A1B⊥平面AB1C.因为CO平面AB1C,所以CO⊥A1B.···················································8分又因为A1B∩AB1=O,A1B,AB1平面A1
ABB1,所以CO⊥平面A1ABB1,所以∠CBO即为直线BC与平面ABB1A1所成的角.································10分在边长都为1的四边形A1ABB1中,∠ABB1=π2,所以BO=22.OABB
1A1C1C(第21题图)因为BC=1,所以cos∠CBO=22,所以∠CBO=π4,所以直线BC与平面ABB1A1所成角的大小为π4.·····································12
分方法2解:取AB1中点O,连接BO,CO.在△ACB1中,AC=B1C=1,所以CO⊥AB1,··········································6分在边长都为1的正方形A1ABB1中,BO=22,A1B=2.又因为
AC2+B1C2=A1B2,所以△ACB1为直角三角形,所以CO=22.在△ACB1中,CO2+BO2=BC2,所以CO⊥BO.…………………………………………8分又因为AB1∩BO=O,AB1,BO平面
A1ABB1,所以CO⊥平面A1ABB1,所以∠CBO即为直线BC与平面ABB1A1所成的角.···········································10分在边长都为1的
四边形A1ABB1中,∠ABB1=π2,所以BO=22.因为BC=1,所以cos∠CBO=22,所以∠CBO=π4,所以直线BC与平面ABB1A1所成角的大小为π4.·····································
············12分22.(本小题满分12分)解:(1)因为BF1→=(-3,-b),BF2→=(3,-b),所以BF1→·BF2→=b2-3=-2,所以b2=1.················································
·············2分因为c=3,所以a2=4,所以椭圆C的方程为x24+y2=1.········································································4
分(2)设直线MN的方程为y=k(x-2)-1,M(x1,y1),N(x2,y2),联立x2+4y2=4,y=k(x-2)-1,消去y得,(1+4k2)x2-8k(1+2k)x+16k2+16k=0,
所以x1+x2=8k(1+2k)1+4k2,x1x2=16k2+16k1+4k2,··························································6
分OABB1A1C1C(第21题图)直线BM的方程为y=y1-1x1x+1,直线BN的方程为y=y2-1x2x+1,设P,Q两点的纵坐标分别为yP,yQ,所以yP=4×y1-1x1+1,yQ=4×y2-1
x2+1.··························································8分因为yP+yQ=4×(y2-1x2+y1-1x1)+2=4×[k(x2-2)-2x2+k(x1-2)-2x1]+2=4×(2k-2k+2x2-2k+2x1)
+2=4×[2k-(2k+2)x1+x2x1x2]+2·····························································10分=4×[2k-(2k+2)8k(1+2k)16(k+
k2)]+2=4×[2k-(2k+1)]+2=-2,所以yP+yQ2=-1,所以存在G(4,-1),使得点P,Q关于点G对称.·············································12分获得更多资源请扫码加入享学资源
网微信公众号www.xiangxue100.com