【文档说明】湖南省各地区2022年中考数学真题按题型难易度分层分类汇编-11解答题(提升题).docx,共(22)页,659.037 KB,由envi的店铺上传
转载请保留链接:https://www.doc5u.com/view-89cf56cb4b75dfabb7419a4606a8d665.html
以下为本文档部分文字说明:
湖南省各地区2022年中考数学真题按题型难易度分层分类汇编-11解答题(提升题)一.反比例函数综合题(共1小题)1.(2022•衡阳)如图,反比例函数y=的图象与一次函数y=kx+b的图象相交于A(3,1),B(﹣1,n)两点.(1)求反比例函数和一次函数的关系式;(2)设直线A
B交y轴于点C,点M,N分别在反比例函数和一次函数图象上,若四边形OCNM是平行四边形,求点M的坐标.二.二次函数综合题(共5小题)2.(2022•湘西州)定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所
围成的封闭曲线称为“月牙线”,如图①,抛物线C1:y=x2+2x﹣3与抛物线C2:y=ax2+2ax+c组成一个开口向上的“月牙线”,抛物线C1和抛物线C2与x轴有着相同的交点A(﹣3,0)、B(点B在点A右侧),与y轴的交点分别为G、H(0,﹣1).(1)求抛物线C2的
解析式和点G的坐标.(2)点M是x轴下方抛物线C1上的点,过点M作MN⊥x轴于点N,交抛物线C2于点D,求线段MN与线段DM的长度的比值.(3)如图②,点E是点H关于抛物线对称轴的对称点,连接EG,在x轴上是否存在点F,使得△EFG是以EG为腰的等腰三角形?若存在,请求出点F的坐标;若不存在,请说
明理由.3.(2022•张家界)如图,已知抛物线y=ax2+bx+3(a≠0)的图象与x轴交于A(1,0),B(4,0)两点,与y轴交于点C,点D为抛物线的顶点.(1)求抛物线的函数表达式及点D的坐标;(2)若四边形BCEF为矩形,CE=3.点M
以每秒1个单位的速度从点C沿CE向点E运动,同时点N以每秒2个单位的速度从点E沿EF向点F运动,一点到达终点,另一点随之停止.当以M、E、N为顶点的三角形与△BOC相似时,求运动时间t的值;(3)抛物线的对称轴与x轴交于点P,点G是点P关于点D的对称点,点Q是x轴下方抛物线图象上的动点.若
过点Q的直线l:y=kx+m(|k|)与抛物线只有一个公共点,且分别与线段GA、GB相交于点H、K,求证:GH+GK为定值.4.(2022•长沙)若关于x的函数y,当t﹣≤x≤t+时,函数y的最大值为M,最小值为N,令函数h=,我们不妨把函数h称之为函数y的“共同体函数”.(1)①若函数y=
4044x,当t=1时,求函数y的“共同体函数”h的值;②若函数y=kx+b(k≠0,k,b为常数),求函数y的“共同体函数”h的解析式;(2)若函数y=(x≥1),求函数y的“共同体函数”h的最大值;(3)若函数y=﹣x2+
4x+k,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值.若存在,求出k的值;若不存在,请说明理由.5.(2022•永州)已知关于x的函数y=ax2+bx+c.(1)若a=1,函数的图象经过点(1,﹣4)和点(2,1),求该函数的表达式和最小值;(2)若a=1,b=﹣2
,c=m+1时,函数的图象与x轴有交点,求m的取值范围.(3)阅读下面材料:设a>0,函数图象与x轴有两个不同的交点A,B,若A,B两点均在原点左侧,探究系数a,b,c应满足的条件,根据函数图象,思考以下三个方面:①因为函数的图象与x轴有两个不同的交点,
所以Δ=b2﹣4ac>0;②因为A,B两点在原点左侧,所以x=0对应图象上的点在x轴上方,即c>0;③上述两个条件还不能确保A,B两点均在原点左侧,我们可以通过抛物线的对称轴位置来进一步限制抛物线的位置:即需﹣<0.综上所述,系数a,
b,c应满足的条件可归纳为:请根据上面阅读材料,类比解决下面问题:若函数y=ax2﹣2x+3的图象在直线x=1的右侧与x轴有且只有一个交点,求a的取值范围.6.(2022•岳阳)如图1,在平面直角坐标系xOy中,抛物线F1:y=x2+
bx+c经过点A(﹣3,0)和点B(1,0).(1)求抛物线F1的解析式;(2)如图2,作抛物线F2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;(3)如图3,将(2)中抛物线F2向上
平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C在点D的左侧).①求点C和点D的坐标;②若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合),试求四边形CMDN
面积的最大值.三.三角形综合题(共1小题)7.(2022•湘潭)在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l的垂线,垂足分别为点D、E.(1)特例体验:如图①,若直线l∥BC,AB=AC=,分别求出线段BD、CE和DE的长;(2)规律探究:(Ⅰ)如图②,
若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE的数量关系并说明理由;(Ⅱ)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线
段BD、CE和DE的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD交线段AC于点F,若CE=3,DE=1,求S△BFC.四.四边形综合题(共1小题)8.(2022•衡阳)如图,在菱形ABCD中,AB=4,∠BAD=60°,点P从点A出发,沿线段AD以每
秒1个单位长度的速度向终点D运动,过点P作PQ⊥AB于点Q,作PM⊥AD交直线AB于点M,交直线BC于点F,设△PQM与菱形ABCD重叠部分图形的面积为S(平方单位),点P运动时间为t(秒).(1)当点M与点B重合时,求t的值;(2)当t为何值时,△APQ与△BMF全等;(
3)求S与t的函数关系式;(4)以线段PQ为边,在PQ右侧作等边三角形PQE,当2≤t≤4时,求点E运动路径的长.湖南省各地区2022年中考数学真题按题型难易度分层分类汇编-11解答题(提升题)参考答案与试题解析一.反比例函数综合题(共1小题)1.(2022•衡阳)如图,反比例函数y=的图
象与一次函数y=kx+b的图象相交于A(3,1),B(﹣1,n)两点.(1)求反比例函数和一次函数的关系式;(2)设直线AB交y轴于点C,点M,N分别在反比例函数和一次函数图象上,若四边形OCNM是平行四边形,求点M的坐标.【解答】解:(1)把A(3,1)代入y=得:1=,∴m=
3,∴反比例函数关系式为y=;把B(﹣1,n)代入y=得:n==﹣3,∴B(﹣1,﹣3),将A(3,1),B(﹣1,﹣3)代入y=kx+b得:,解得,∴一次函数的关系式为y=x﹣2;答:反比例函数关系式为y=
,一次函数的关系式为y=x﹣2;(2)在y=x﹣2中,令x=0得y=﹣2,∴C(0,﹣2),设M(m,),N(n,n﹣2),而O(0,0),∵四边形OCNM是平行四边形,∴CM、ON为对角线,它们的中点重合,,解得或,∴M(,)或(﹣,﹣);二.二次
函数综合题(共5小题)2.(2022•湘西州)定义:由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”,如图①,抛物线C1:y=x2+2x﹣3与抛物线C2:y=ax2+2ax+c组成一个开口向上的“月牙线”,抛物线C1和抛物线C
2与x轴有着相同的交点A(﹣3,0)、B(点B在点A右侧),与y轴的交点分别为G、H(0,﹣1).(1)求抛物线C2的解析式和点G的坐标.(2)点M是x轴下方抛物线C1上的点,过点M作MN⊥x轴于点N,交抛物线C2于点D,求线段MN与线段DM的长度的比
值.(3)如图②,点E是点H关于抛物线对称轴的对称点,连接EG,在x轴上是否存在点F,使得△EFG是以EG为腰的等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.【解答】解:(1)将A(﹣3,0)、H(0,﹣1)代入y=
ax2+2ax+c中,∴,解得,∴y=x2+x﹣1,在y=x2+2x﹣3中,令x=0,则y=﹣3,∴G(0,﹣3);(2)设M(t,t2+2t﹣3),则D(t,t2+t﹣1),N(t,0),∴NM=﹣t2﹣2
t+3,DM=t2+t﹣1﹣(t2+2t﹣3)=﹣t2﹣t+2,∴==;(3)存在点F,使得△EFG是以EG为腰的等腰三角形,理由如下:由(1)可得y=x2+2x﹣3的对称轴为直线x=﹣1,∵E点与H点关于对称轴x=﹣1
对称,∴E(﹣2,﹣1),设F(x,0),①当EG=EF时,∵G(0,﹣3),∴EG=2,∴2=,解得x=﹣2或x=﹣﹣2,∴F(﹣2,0)或(﹣﹣2,0);②当EG=FG时,2=,此时x无解;综上所述:F点坐标为(﹣2,0)或(﹣﹣2,0).3.(2022•张家界)如
图,已知抛物线y=ax2+bx+3(a≠0)的图象与x轴交于A(1,0),B(4,0)两点,与y轴交于点C,点D为抛物线的顶点.(1)求抛物线的函数表达式及点D的坐标;(2)若四边形BCEF为矩形,CE=3.点M以每秒1个单位
的速度从点C沿CE向点E运动,同时点N以每秒2个单位的速度从点E沿EF向点F运动,一点到达终点,另一点随之停止.当以M、E、N为顶点的三角形与△BOC相似时,求运动时间t的值;(3)抛物线的对称轴与x轴交于点P,点G是点P关于点D的对称点,点Q是x轴下方抛
物线图象上的动点.若过点Q的直线l:y=kx+m(|k|)与抛物线只有一个公共点,且分别与线段GA、GB相交于点H、K,求证:GH+GK为定值.【解答】解:(1)设二次函数表达式为:y=ax2+bx+3,将A(1,0)、B(4,0
)代入y=ax2+bx+3得:,解得,∴抛物线的函数表达式为:,又∵=,==,∴顶点为D;(2)依题意,t秒后点M的运动距离为CM=t,则ME=3﹣t,点N的运动距离为EN=2t.①当△EMN∽△OBC时,∴,解得t=;②当△EMN
∽△OCB时,∴,解得t=;综上所述,当或时,以M、E、N为顶点的三角形与△BOC相似;(3)∵点关于点D的对称点为点G,∴,∵直线l:y=kx+m与抛物线图象只有一个公共点,∴只有一个实数解,∴Δ=0,即:,解得:,利用待定系数法可得直线GA的解析式为:,
直线GB的解析式为:,联立,结合已知,解得:xH=,同理可得:xK=,则:GH==,GK==×,∴GH+GK=+×=,∴GH+GK的值为.4.(2022•长沙)若关于x的函数y,当t﹣≤x≤t+时,函数y的最大值为M,最小值为N,令函数h=,我们不妨把函数h称之为
函数y的“共同体函数”.(1)①若函数y=4044x,当t=1时,求函数y的“共同体函数”h的值;②若函数y=kx+b(k≠0,k,b为常数),求函数y的“共同体函数”h的解析式;(2)若函数y=(x≥1),求函
数y的“共同体函数”h的最大值;(3)若函数y=﹣x2+4x+k,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值.若存在,求出k的值;若不存在,请说明理由.【解答】解:(1)①∵t=1,∴≤x≤,∵函数y=4044x,∴函数的最大值M=6066,函数的最小值N=2022
,∴h=2022;②当k>0时,函数y=kx+b在t﹣≤x≤t+有最大值M=kt+k+b,有最小值N=kt﹣k+b,∴h=k;当k<0时,函数y=kx+b在t﹣≤x≤t+有最大值M=kt﹣k+b,有最小值N
=kt+k+b,∴h=﹣k;综上所述:h=|k|;(2)t﹣≥1,即t≥,函数y=(x≥1)最大值M=,最小值N=,∴h=,当t=时,h有最大值;(3)存在实数k,使得函数y的最大值等于函数y的“共同体函数“h的最小值,理由如下:∵y=﹣x2+4x+k=﹣(x﹣2)2+4+k,∴函数
的对称轴为直线x=2,y的最大值为4+k,①当2≤t﹣时,即t≥,此时M=﹣(t﹣﹣2)2+4+k,N=﹣(t+﹣2)2+4+k,∴h=t﹣2,此时h的最小值为;②当t+≤2时,即t≤,此时N=﹣(t﹣﹣2)2+4+
k,M=﹣(t+﹣2)2+4+k,∴h=2﹣t,此时h的最小值为;③当t﹣≤2≤t,即2≤t≤,此时N=﹣(t+﹣2)2+4+k,M=4+k,∴h=(t﹣)2,④当t<2≤t+,即≤t<2,此时N=﹣(t﹣﹣2)2+4+k,M=4+k,∴h=(t﹣)2,h的函数图象如图所示:
h的最小值为,由题意可得=4+k,解得k=﹣;综上所述:k的值为﹣.5.(2022•永州)已知关于x的函数y=ax2+bx+c.(1)若a=1,函数的图象经过点(1,﹣4)和点(2,1),求该函数的表达式和最小值;(2)若a=1,b=﹣2,c=m+1时,
函数的图象与x轴有交点,求m的取值范围.(3)阅读下面材料:设a>0,函数图象与x轴有两个不同的交点A,B,若A,B两点均在原点左侧,探究系数a,b,c应满足的条件,根据函数图象,思考以下三个方面:①因为函数的图象与x轴有两个不同的交点,所以Δ=b2﹣4ac>0;②因为A,B两点在原点左侧,所
以x=0对应图象上的点在x轴上方,即c>0;③上述两个条件还不能确保A,B两点均在原点左侧,我们可以通过抛物线的对称轴位置来进一步限制抛物线的位置:即需﹣<0.综上所述,系数a,b,c应满足的条件可归纳为:请根据上面阅读材料,类比解决下面问题:若
函数y=ax2﹣2x+3的图象在直线x=1的右侧与x轴有且只有一个交点,求a的取值范围.【解答】解:(1)根据题意得,解得,∴y=x2+2x﹣7=(x+1)2﹣8,∴该函数的表达式为y=x2+2x﹣7或y=(x+1)2﹣
8,当x=1时,y的最小值为0;(2)根据题意得y=x2﹣2x+m+1,∵函数的图象与x轴有交点,∴Δ=b2﹣4ac=(﹣2)2﹣4(m+1)≥0,解得:m≤0;(3)根据题意得到y=ax2﹣2x+3的图象如图所示,∵抛物线y=ax2﹣2x+3经过(0,3),∴如图1,,即,
∴a的值不存在;如图2,如图3不成立;如图4,,即∴a的值不存在;如图5,,即,∴a的值为;如图6,当a=0时,函数解析式为y=﹣2x+3,函数与x轴的交点为(1.5,0),∴a=0成立;综上所述,a的取值范围为﹣1<a≤0或a=.6.(202
2•岳阳)如图1,在平面直角坐标系xOy中,抛物线F1:y=x2+bx+c经过点A(﹣3,0)和点B(1,0).(1)求抛物线F1的解析式;(2)如图2,作抛物线F2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;(3)如图3
,将(2)中抛物线F2向上平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C在点D的左侧).①求点C和点D的坐标;②若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合)
,试求四边形CMDN面积的最大值.【解答】解:(1)将点A(﹣3,0)和点B(1,0)代入y=x2+bx+c,∴,解得,∴y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线的顶点(﹣1,﹣4),∵顶点(﹣1,﹣4)关于原点的对称点为(1,4),
∴抛物线F2的解析式为y=﹣(x﹣1)2+4,∴y=﹣x2+2x+3;(3)由题意可得,抛物线F3的解析式为y=﹣(x﹣1)2+6=﹣x2+2x+5,①联立方程组,解得x=2或x=﹣2,∴C(﹣2,﹣3)或D(2,5);②设直线CD的解析式为y=kx+b,∴,解得,∴y=2x+1,过点M作MF∥
y轴交CD于点F,过点N作NE∥y轴交于点E,设M(m,m2+2m﹣3),N(n,﹣n2+2n+5),则F(m,2m+1),E(n,2n+1),∴MF=2m+1﹣(m2+2m﹣3)=﹣m2+4,NE=﹣n2+2n+5﹣2n﹣1=﹣
n2+4,∵﹣2<m<2,﹣2<n<2,∴当m=0时,MF有最大值4,当n=0时,NE有最大值4,∵S四边形CMDN=S△CDN+S△CDM=×4×(MF+NE)=2(MF+NE),∴当MF+NE最大时,四边形CMDN面积的最大值为16.三.三角形综合题(共1小题)7.(2022•湘潭)在△ABC
中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l的垂线,垂足分别为点D、E.(1)特例体验:如图①,若直线l∥BC,AB=AC=,分别求出线段BD、CE和DE的长;(2)规律探究:(Ⅰ
)如图②,若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE的数量关系并说明理由;(Ⅱ)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线段BD、CE和DE的数量关系并说明理由;(3)
尝试应用:在图③中,延长线段BD交线段AC于点F,若CE=3,DE=1,求S△BFC.【解答】解:(1)在△ABC中,∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵l∥BC,∴∠DAB=∠ABC=90°,∠CAE=∠
ACB=45°,∴∠DAB=∠ABD=45°,∠EAC=∠ACE=45°,∴AD=BD,AE=CE,∵AB=AC=,∴AD=BD=AE=CE=1,∴DE=2;(2)(Ⅰ)DE=BD+CE.理由如下:在Rt△ADB中,∠ABD+∠BAD=90°,∵∠BAC=90°,∴∠BA
D+∠CAE=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS);∴CE=AD,BD=AE,∴DE=AE+AD=BD+CE.(Ⅱ)DE=BD﹣CE.理由如下:在Rt△ADB中,∠ABD+∠BAD=9
0°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS);∴CE=AD,BD=AE,∴DE=AE﹣AD=BD﹣CE.(3)由(2)
可知,∠ABD=∠CAE,DE=AE﹣AD=BD﹣CE∵∠BAC=∠ADB=90°,∴△ABD∽△FBA,∴AB:FB=BD:AB,∵CE=3,DE=1,∴AE=BD=4,∴AB=5.∴BF=.∴S△BFC=S△ABC﹣S△ABF=×52﹣×3×=
.四.四边形综合题(共1小题)8.(2022•衡阳)如图,在菱形ABCD中,AB=4,∠BAD=60°,点P从点A出发,沿线段AD以每秒1个单位长度的速度向终点D运动,过点P作PQ⊥AB于点Q,作PM⊥AD交直线AB于点M,交直线BC于点F,设△PQM与菱
形ABCD重叠部分图形的面积为S(平方单位),点P运动时间为t(秒).(1)当点M与点B重合时,求t的值;(2)当t为何值时,△APQ与△BMF全等;(3)求S与t的函数关系式;(4)以线段PQ为边,在PQ右侧作等边三角形PQE,当2≤t≤4
时,求点E运动路径的长.【解答】解:(1)M与B重合时,如图1,∵PQ⊥AB,∴∠PQA=90°,∴PA=AB=2,∴t=2;(2)①当0≤t≤2时,∵AM=2t,∴BM=4﹣2t,∵△APQ≌△BMF,∴AP=B
M,∴t=4﹣2t,∴t=;②当2<t≤4时,∵AM=2t,∴BM=2t﹣4,∵△APQ≌△BMF,∴AP=BM,∴t=2t﹣4,∴t=4;综上所述,t的值为4或;(3)①0≤t≤2时,如图2,在Rt△APQ中,PQ=
t,∴MQ=t,∴S=t=;②当2<t≤4时,如图3,∵BF=t﹣2,MF=(t﹣2),∴S△BFM=BF•MF=,∴S=S△PQM﹣S△BFM=﹣;∴S=;(4)连接AE,如图4,∵△PQE为等边三角形,∴PE=t,在Rt△APE中,tan∠PAE=,∴∠PAE为定值,∴点E
的运动轨迹为直线,∵AP=t,∴AE===t,当t=2时,AE=,当t=4时,AE=2,∴E点运动路径长为2﹣=.