西藏林芝二高2019-2020学年高二下学期第二学段考试(期末)数学(理)试题含答案

DOC
  • 阅读 3 次
  • 下载 0 次
  • 页数 7 页
  • 大小 476.000 KB
  • 2024-09-17 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
西藏林芝二高2019-2020学年高二下学期第二学段考试(期末)数学(理)试题含答案
可在后台配置第一页与第二页中间广告代码
西藏林芝二高2019-2020学年高二下学期第二学段考试(期末)数学(理)试题含答案
可在后台配置第二页与第三页中间广告代码
西藏林芝二高2019-2020学年高二下学期第二学段考试(期末)数学(理)试题含答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的4 已有3人购买 付费阅读2.40 元
/ 7
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】西藏林芝二高2019-2020学年高二下学期第二学段考试(期末)数学(理)试题含答案.doc,共(7)页,476.000 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-86b48e3d67a0480c2236a9a76902a45c.html

以下为本文档部分文字说明:

林芝市第二高级中学2019-2020学年第二学期第二学段考试高二理科数学试卷(考试时间:120分钟试卷满分:150分出题人:)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.作答时,务必将答案写在答题卡上。写在本试卷及草稿纸上

无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数i−25的共轭复数是()A.2+iB.2−iC.i−−2D.i−22.曲线的极

坐标方程sin4=化为直角坐标为()。A.4)2(22=++yxB.4)2(22=−+yxC.4)2(22=+−yxD.4)2(22=++yx3.已知f(x)=3x·sinx,则'(1)f=()A.31+c

os1B.31sin1-cos1C.31sin1+cos1D.sin1+cos14.定积分dxexx−10)2(的值为()A.e−2B.e−C.eD.e+25.由直线y=x-4,曲线xy2=以及x轴所围成的图形面积为()A.13B.2

25C.340D.156.函数f(x)=x2-2lnx的单调减区间是()A.(-∞,-1]∪(0,1]B.[1,+∞)C.(0,1]D.[-1,0)∪(0,1]7.在100件产品中,有3件是次品,现从中任意抽取5件,其中至少有2件次品的取

法种数为()A.23397CCB.2332397397CC+CCC.514100397C-CCD.5510097C-C8.二项式3032aa−的展开式的常数项为第()项A.17B.20C.19D.189.设2921101211(1)(21)(2)(2)(2)xxaaxaxax++=

+++++++,则01211aaaa++++的值为()A.2−B.1−C.1D.210.设随机变量服从B(6,12),则P(=3)的值是()A.516B.316C.58D.3811.设aR,函数()xxfxeae−=

−的导函数为()'fx,且()'fx是奇函数,则a为()A.0B.1C.2D.-112.函数223)(abxaxxxf+−−=在1=x处有极值10,则点),(ba为()A.)3,3(−B.)11,4(−C.)3,3(−或)11,4(−D.不存在二、填空题:本大题共4小题,每小题5

分,共20分.13.有4台设备,每台正常工作的概率均为0.9,则4台中至少有3台能正常工作的概率为.(用小数作答)14.若复数z=21+3i,其中i是虚数单位,则|z|=______.15.在援助武汉抗击新冠肺炎行动中,需要从A

医院某科室的6名男医生、4名女医生中分别抽调3名男医生、2名女医生,且男医生中唯一的主任医师必须参加,则不同的选派案共有________种.(用数字作答)16.设直线参数方程为+=+=t

ytx23322(t为参数),则它的斜截式方程为。三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共

60分)17.(12分)实数m取怎样的值时,复数immmz)152(32−−+−=是:(1)实数?(2)虚数?(3)纯虚数?18、(12分)已知函数3()3fxxx=−.(1)求函数()fx在3[3,]2−上的最大值和最小值.(2)过点(

2,6)P−作曲线()yfx=的切线,求此切线的方程.19.(本小题满分12分)某射击运动员射击一次所得环数X的分布列如下:X0~678910P00.20.30.30.2现进行两次射击,以该运动员两次射击所得的最高环数作为他的成绩,记为.(1)求该运动员两次都命中7环的概率.

(2)求的分布列及数学期望E().20.2018年2月9~25日,第23届冬奥会在韩国平昌举行,4年后,第24届冬奥会将在中国北京和张家口举行,为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看奥运会开幕式进行了问卷调查,统计数据

如下:收看没收看男生6020女生2020(1)根据上表说明,能否有99%的把握认为,收看开幕式与性别有关?(2)现从参与收看了开幕式的学生中,采用分层抽样的方法选取8人,参加2022年北京冬奥会志愿者宣传活动.①问男、女学生各选取多少人?②若从这8人中随机选取2人到校广播

站宣传冬奥会,求恰好选到一名男生为主播一名女生为副播的概率P.附:22()()()()()nadbckabcdacbd−=++++,其中nabcd=+++.20()PKk0.1000.0500.0250.0100.0

050k2.7063.8415.0246.6357.87921.已知函数2()ln(1)()fxxaxaxaR=−−−.(1)当1=a时,求函数)(xf的最值;(2)求函数)(xf的单调区间.(二)选考题:共10分.请考生在第22、23两题中任选一题做答,如果多做,则按所做的第一

题记分.22.[选修4-4:坐标系与参数方程]在平面直角坐标系中,曲线221:2Cxy−=,曲线2C的参数方程为22cos2sinxy=+=(为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(1)求曲线1C,2C的极坐标方程;(2)在极坐标系中,射线..6=

与曲线1C,2C分别交于A,B两点(异于极点O),定点(3,0)M,求MAB的面积.23.[选修4-5:不等式选讲]设不等式-2<|x-1|-|x+2|<0的解集为M,a,b∈M.(1)证明:13a+16b<14;(2)比较|1-4ab

|与2|a-b|的大小,请说明理由.理科数学试题答案(理科)参考答案一.选择题题号123456789101112答案DBCACCBDAADB二、填空题:13、0.947714、115、6016、3233−+=xy三、解答题(解答

应写出文字说明,证明过程或演算步骤)17.解:(1)当01522=−−mm,即3−=m或5=m时,复数Z为实数;(3分)(2)当01522−−mm,即3−m且5m时,复数Z为虚数;(7分)(3)当03-m,01522=−−且mm,即3=m时,复数Z为纯虚数;(10分)18.解:(I)

'()3(1)(1)fxxx=+−,当[3,1)x−−或3(1,]2x时,'()0fx,3[3,1],[1,]2−−为函数()fx的单调增区间当(1,1)x−时,'()0fx,[1,1]−为

函数()fx的单调减区间又因为39(3)18,(1)2,(1)2,()28ffff−=−−==−=−,所以当3x=−时,min()18fx=−当1x=−时,max()2fx=…………6分(II)设切点为3(,3)Qxxx−,则所求切

线方程为32(3)3(1)()yxxxxx−−=−−由于切线过点(2,6)P−,326(3)3(1)(2)xxxx−−−=−−,解得0x=或3x=所以切线方程为3624(2)yxyx=−+=−或即30xy+=或24540xy−−=…………

12分19.解:(1)设“该运动员两次都命中7环”为事件A,因为该运动员在两次射击中,第一次射中7环,第二次也射中7环,故所求的概率P(A)=0.2×0.2=0.04(2)可取7、8、9、10(7)0.

04P==2(8)20.20.30.30.21P==+=2(9)20.20.320.30.30.30.39P==++=(10)1(7)(8)(9)0.36PPPP==−=−=−==故

的分布列为E9.07=20.(1)27.56.635k,有99%的把握认为,收看开幕式与性别有关(2)男生6人,女生2人2=7P21.解:(1)函数2()ln(1)()fxxaxaxa=−−−R的定义域是(1,)+.当1a=时,32(

)12()2111xxfxxxx−=−−=−−,所以()fx在3(1,)2为减函数在3(,)2+为增函数,所以函数()fx的最小值为33()ln224f=+.(2)22()2()211axxafxxaxx+−=−−=−−,

①若0a≤时,则22()221,()21axxafxx+−+=−≤>0在(1,)+恒成立,所以()fx的增区间为(1,)+.②若20,12aa+则,故当2(1)2ax+,,22()2()01axxfxx+−=−≤;当2[,)2ax++时,22()2()01axxfxx+−=−

≥.78910P0.040.210.390.36所以当0a时,()fx的减区间为2(1,)2a+,()fx的增区间为2(,)2a++.22.(1)曲线1C的极坐标方程为:2222cossin2

−=,………2分因为曲线2C的普通方程为:()2224xy−+=,2240.xyx+−=………3分曲线2C的极坐标方程为4cos=.………5分(2)由(1)得:点A的极坐标为2,6,点B的极坐标为23,6223232AB=−=−………6分()3,0M

点到射线()06=的距离为33sin62d==………8分MAB的面积为()1133332322222ABd−=−=.………10分23.解:(1)证明:记f(x)=|x-1|-|x+2|=3,x≤-2,-2x-1,-2<x<1,-3,x≥1.由

-2<-2x-1<0,解得-12<x<12,………3分则M=-12,12.所以13a+16b≤13|a|+16|b|<13×12+16×12=14.………5分(2)由(1)得a2<14,b2<14.…

……6分因为|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=(4a2-1)(4b2-1)>0,所以|1-4ab|2>4|a-b|2,故|1-4ab|>2|a-b|.………10分

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?