【文档说明】2023届黑龙江省哈尔滨市第六中学校高三下学期第一次模拟考试 数学答案.pdf,共(4)页,171.067 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-8082140d9845f32fd1aa475b57b489e6.html
以下为本文档部分文字说明:
学科网(北京)股份有限公司高三一模数学答案一.单选题1.C2.D3.B4.A5.D6.A7.D8.B二.多选题9.ABC10.AC11.ABD12.BC三.填空题13.4014.2736415.[0,e)16.211四.解答题
1035704sin9,35105cos8.3,2,00232103,1,23,21,0,0,1,,,61,0,20232103,1,23,21,0,3,0,,,1,23,21,0,3
,1,0,3,0,0,3,1,2,0,0,,,,.120.14.24523//,,//1.1722222221111111
nmnmDEFAnzyxxEFEDzyxnEFDmzyxyAFAEzyxmAEFFDECPzyxAPAEABACDAEEBADABCDPCFACPAPCAABCDPAEFPDPCDPDE
FPCDPD,的大小为设二面角法向量为设面法向量设面轴建立空间直角坐标系所在直线为为坐标原点,以以为中点中在菱形中点为得由,,面面面,面面学科网(北京)股份有限公司121111,2121211,,121,121110.21121219.121221
21722222222122222122222112541,1,131,0),)((,31.221.1811312211021110111211111212221212
则是等比数列,数列解得则设记为由的等差数列,公差是首
项为数列正项数列中,时,当时,当nbcccccncnnbnnbnTnTnTnTTnbnbnadaaaaaaaaaaaaaaaaSSaSSnannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
nnnnnnn124,3338,2tantan346tantan310tantan38tan3tan82tan1tan14sin2coscos2sinsin2sin4sin83sin2sin4,3sin3sinsin2sin6sin,s
in212125462302202032.sinsinsinsin,,cossin2sinsincos2,22cos1.1922222
hBBBBBBBBBBBBBBBBBahBBaBcBcBbBaBahBacchShABBBCBABABCBABBABBABBABACBACA
BBCAbbcbcbccbcacbA,,单调递减,,在由正弦定理,上的高为设,得为锐角三角形,,舍或代入化简得又由正弦定理由余弦定理学科网(北京)股份有限公司
12.,3411,4~104333169,21232349,21,1,432123,4323,21,43,23331152341214324213,2111.20221211211121211221212122121222121221222
11122121242422231212232213该同学不能进入决赛,的次数四轮比赛中获得巧手奖得奖的概率一轮比赛中可获得巧手所以强化训练后该同学则,创意作品入选概率为,入选的概率设强
化训练后规定作品获得巧手奖的概率为则该同学在一轮比赛中得巧手奖该同学在一轮比赛中获设事件PXEPBXPPPPPPPPP
PPPPPPPPPPPPPPPPPPPPPCPPPCPPPPPCCCCCCCCCAPA12117-1076914,14,.144712,14,,,610,02411222,2:,122:25122122,122
3,2,21,5122122,2,122232.221,2.,1.21222402221212212122122122112222222022220000002200112122222020000000100000000200
点综上,不存在这样的,舍或舍解得上,代入得在又,重心为由韦达定理设且恒成立得联立设少解扣一分或的轨迹方程为化简得的距离到的距离到是矩形,可得四边形方法二:由已知或的轨迹方程为所以化简得的距离为到直线得由平行
的直线为与方法一:设过HmmmmHHmmmyyxxHOPQHmyymxxmyymmyyyxQyxPmmyymyxmyxmyxlyxExyyxEyxyxSyxdlEyxdlEOAEBllxyyxEyxyxyxyxlEyxOAyxxxxyyxyxxyylyxEA
学科网(北京)股份有限公司
12.4111,01,11001,1,10404941,01,10114047.4311,1,04211046,32,32,21,21,1111,111110ln121255,1,144141,2.,,,,0012,010,1.,0122,04,1121.12121.,01.221m
ax111000141313121211122222222
mgxgxgxxxgxxggxxxgxxmmmgxgxggxgxgxGmmmmxxxxexxxexxxexxxexxmxexxmxGexxxmxGexxxmxgx
exxxmxgabmmabababmabmmbabaxfbaxmmxxhhmbaxmmxxhmmxmmxxhxxmmxxxmxfxxxxxxxxx综上所述,此时不成立,舍去上单调递减,上单调递增,在,在,上有根设为,在设
且上单调递减,上单调递增,在,在上有根设为,在时,,即当成立,上单调递减,在此时,上单调递减,,在时,,即当上单调递减,在上单调递减,,在则令则令令上恒成立,在令由韦达定理存在单调递减区间即上的解集为在且又有两个不等实根且令