【文档说明】宁夏回族自治区银川一中2023-2024学年高三第二次月考 文数答案.docx,共(3)页,336.915 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-801f6ed3d8932f4b9456b328681cef4e.html
以下为本文档部分文字说明:
银川一中2024届高三第二次月考数学(文科)参考答案一、选择题:题号123456789101112答案ACDBBCDBCADC二、填空题13.3214.515.22+16.18三、解答题17.【详解】(1)设等差数列na的公差为d,.....................1分∴591
3121223357aaadSad+=+=−=+=,解得1234ad==−,..............................4分∴1(1)274naandn=+−=−...............................6分(2)
由(1)知:0na,则2740n−,得274n,又*nN,∴7n时,0na,而16n,0na,..........................8分∴数列na的前n项和*1*167...,(6,)...(...),(7,)nnnaannNTa
aaannN++=++−++,..................10分而665623(4)782S=+−=,2252=−nnnS,∴276...25278nnaaSSnn++=−=−−,故2*2*2
52,(6,)225156,(7,)nnnnnNTnnnnN−=−+...................12分18【详解】(1)因为1cos8BDC=,则()1coscosπcos8ADBBDCBDC=−=−=−
,.....................2分2BD=,3AB=,ABD△中,2222cosABADBDADBDADB=+−,.....................4分即2194228ADAD=+−−,解得:2AD=或52AD=−(舍),所以2AD=;......
...............6分(2)2229443cos22324ABADBDAABAD+−+−===,.....................8分因为0π,A所以27sin1cos4A
A=−=,213ACADDC=+=+=,.....................10分所以11797sin332248ABCSABACA===.....................12分19.【解析】(1)当1n=时,1112239Saa==−
,解得19a=......................2分当2n时,1122233nnnnnaSSaa−−=−=−,整理得13nnaa−=,..................4分所以na是以9为首项,3为公比的等比数列,故11933nnna−+==...........
.........6分(2)由(1)知,()123nnbn+=+,则()231334323nnTn+=++++①,所以()3423334323nnTn+=++++②,...................8分①-②得:()341222733323nnnTn+
+−=++++−+()3222332723272331322nnnnn+++−+=+−+=−−,...................10分故22327344nnnT++=−....................12分20.【详解】(1)证
明:由题知sin()sin()coscosABACBC−−=,所以sin()cossin()cosABCACB−=−,...................2分所以sincoscoscossincossincoscoscossincosABCABCACBACB
−=−,所以cossincoscossincosABCACB=...................4分因为A为锐角,即cos0A,所以sincossincosBCCB=,所以tantan=BC,所以BC=...................6分
(2)由(1)知:BC=,所以sinsinBC=,因为sin1aC=,所以1sinCa=,因为由正弦定理得:2sin,sin2baRABR==,所以sin2sinsin12baCRAbAR===,所以
1sinAb=,...................8分因为2ABCC=−−=−,所以1sinsin2ACb==,所以222211sinsin2CCab+=+221cos213(1cos2)cos2cos2222CCCC−=+−=−−
+因为ABC是锐角三角形,且BC=,所以42C,所以22C,所以1cos20C−,...................10分当1cos24C=−时,2211ab+取最大值为2516,所以2211ab+最大值为:2516.........
...........12分21.【详解】(1)21()ln2hxaxx=−,所以2()(0)aaxhxxxxx−=−=,...................2分因为0a,所以0xa时,()0hx,xa
时,()0hx,所以()hx的增区间为()0,a,减区间为(),a+....................4分(2)当1a=,()lnfxx=.由()()()()121122mgxgxxfxxfx−−恒成立,即()
()()()111222mgxxfxmgxxfx−−恒成立,设()()2()gln(0)2mtxmxxfxxxxx=−=−由题意知120xx,故当()0,x+时函数()tx单调递增,所以()ln10txmxx=−−恒成立,即ln1+xmx恒成立,........
...........6分因此,记ln1xyx+=,得2ln()xyxx−=,∵函数在()0,1上单调递增,在()1,+上单调递减,∴函数()hx在1x=时取得极大值,并且这个极大值就是函数()hx的最大值.由此可得()max()11hxh==,故1m,结合已知条件mZ,1m£,可得1m=
....................8分(3)不等式()()()()23fxgxaxgx++−在1,xe上有解.即为21ln2(3)2axxaxx++−,化简得:21(ln)2axxxx−−,在1
,xe上有解.由1,xe知ln0xx−,因而212lnxxaxx−−,设212lnxxyxx−=−,...................10分由222111(1)(ln)1(1)1ln2
2(ln)(ln)xxxxxxxxxyxxxx−−−−−−+−==−−,∵当()1,xe时10x−,11ln02xx+−,∴0y在1,xe时成立.由不等式有解,可得知min12ay
=−,即实数a的取值范围是1,2−+....................12分22.【详解】(1)由2π3OON=知:21OOON==,6πAON=,...................2分点N的极角为
π11π2π66−=,点N的极坐标为11π1,6....................5分(2)由题意知:2OK=,π2sinπ2OM=,π3MOK=−,1πsin2sinsin23MO
KSOKOMMOK==−2131132sinsincossin3sincoscos2sin222222=−=−=−−1πsin226=−+
,.................7分π,π2,π7π13π2,666+,π1sin21,62+−,30,2MOKS..........10分23【详解】(1)因为222,,R,9abcabc+
++=,所以32222223abcabc++,即322293abc,...................2分当且仅当abc==且2229abc++=,即3abc===时,等号成立,所以32223abc,即22227abc,故33abc.............
.......5分(2)因为,,Rabc+,因为22244abcabcabcbc+++=++,当且仅当24abcbc+=+,即2abc=+取得等号,同理可得24bcabca+++,当且仅当2bac=+取得等号,同理可得24cabcab+++,当且仅当2cba
=+取得等号,...................7分上面三式相加可得2222abcabcabcbccaab++++++++++,即2222abcabcbccaab+++++++,当且仅当2abc=+,2bac=+,2cba=+且2229abc+
+=,即3abc===时,等号成立,因为0abc++,所以23abcabc++++,获得更多资源请扫码加入享学资源网微信公众号www.xiangxue100.com