山西省怀仁市第一中学2021-2022学年高二上学期第二次月考文数考试答案

PDF
  • 阅读 2 次
  • 下载 0 次
  • 页数 5 页
  • 大小 312.487 KB
  • 2024-10-23 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
山西省怀仁市第一中学2021-2022学年高二上学期第二次月考文数考试答案
可在后台配置第一页与第二页中间广告代码
山西省怀仁市第一中学2021-2022学年高二上学期第二次月考文数考试答案
可在后台配置第二页与第三页中间广告代码
山西省怀仁市第一中学2021-2022学年高二上学期第二次月考文数考试答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的2 已有2人购买 付费阅读2.40 元
/ 5
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】山西省怀仁市第一中学2021-2022学年高二上学期第二次月考文数考试答案.pdf,共(5)页,312.487 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-6517b86a043ec829baf891352f53fdd5.html

以下为本文档部分文字说明:

高二文科数学答案第1页,共5页怀仁一中2021-2022学年第一学期高二年级第二次月考文科数学答案及解析1.B[z(z-1)=(2+i)(1-i)=3-i.]2.D[因为l1∥l2,所以a2-1=0,a=±

1,经检验当a=1时,l1:x+y+1=0,l2:x+y+1=0,l1与l2重合(舍),当a=-1时,l1:-x+y+1=0,l2:x-y+1=0,l1∥l2,故选D.]3.D[因为a⊥b,所以-2x+8-4=0,得x=2,由a=(2,

2,1),b=(-2,4,-4),得a+b=(0,6,-3),所以a·(a+b)=12-3=9.]4.A[(x-2)2+y2(x-8)2+y2=14,化简可得5x2+5y2-16x=0,即x-852+y2=6425,所以曲线C关于x轴对称.]5.C[由题意,直线y=-2x+b与直线y=ax+3关于

直线y=-x对称,所以直线y=ax+3上的点(0,3)关于直线y=-x的对称点(-3,0)在直线y=-2x+b上,所以(-2)×(-3)+b=0,所以b=-6,所以直线y=-2x-6上的点(0,-6)关于直线y=-x的

对称点(6,0)在直线y=ax+3上,所以6a+3=0,所以a=-12.]6.D[因为点P(2,2)在圆C上,又圆心的坐标为C(-1,-2),所以kPC=-2-2-1-2=43,直线l与直线PC垂直,直线l的倾斜率为k=-34.所以直线l的方程为y-2=-34(x

-2),即3x+4y-14=0.]7.C[设OQ→=λOP→,则OQ→=λ(1,1,2)=(λ,λ,2λ),QA→=OA→-OQ→=(1,2,3)-(λ,λ,2λ)=(1-λ,2-λ,3-2λ),QB→=OB→-OQ→=(2,1,2)

-(λ,λ,2λ)=(2-λ,1-λ,2-2λ),∴QA→·QB→=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=6λ2-16λ+10,当λ=43时,QA→·QB→取得最小值,此时点Q的坐标为43,43,83.]8.C[直线l1:m(x+2y-

2)-x+2=0过定点A(2,0),在直线l1运动过程中,原点在直线l1上的射影P的轨迹是以OA为直径的圆,记圆心C(1,0),半径为1,由点C(1,0)到直线l2的距离d=155=3可得,动点P到直线l2

的距离的取值范围为[d-1,d+1],即[2,4].]9.C[如图,建立空间直角坐标系,方法一M(0,0,1),N(1,2,0),P(x,y,z),PM→=(-x,-y,1-z),PN→=(1-x,2-y,-z),∴PM→·PN→

=-x(1-x)-y(2-y)-(1-z)z=x2+y2+z2-x-2y-z=x-122+(y-1)2+z-122-32,设MN的中点为G,则G12,1,12,P(x,y,z),∵|PG|=x-122+(y-1)2+z-122,∴|PG|max=62,|PG|min=12,∴(

PM→·PN→)max=622-32=0,(PM→·PN→)min=122-32=-54,∴PM→·PN→的取值范围为-54,0􀭠􀭡􀪁􀪁􀭤􀭥􀪁􀪁,故选C.方法二设MN的中点为G,PM→·PN→=(PG→+GM→)

·(PG→+GN→)=PG→2+PG→·(GM→+GN→)+GM→·GN→=PG→2-GM→2=|PG→|2-|GM→|2,又|MN|=12+12+22=6,∴|GM→|2=622=32,􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋�

�􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋

􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋高二文科数学答案第2页,共5页|PG→|2max=622=32,|PG→|2min=122=14,∴(PM→·PN→)max=32-32=0,(PM→·PN→)min=14-32=-54.∴PM→·PN→的取值范围为-54,0􀭠�

�􀪁􀪁􀭤􀭥􀪁􀪁.]10.B[以A为原点,在平面ABC中过A作AC的垂线为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,因为正三棱柱ABC-A1B1C1中所有棱长为2,则B(3,1,0),

D(0,2,1),E(0,0,x),x∈[0,2],BD→=(-3,1,1),BE→=(-3,-1,x),设平面BED的法向量为n=(a,b,c),则n·BD→=-3a+b+c=0,n·BE→=-3a-b+xc=0,取a=1,得n=1,3-23x+1,23x+1,平面ABC的一个法向量=(0,0

,1),设平面BDE与底面ABC所成锐二面角的平面角为θ,cosθ=23x+11+3-23x+12+23x+12=3(x+1)2-3(x+1)+6=3x2-x+4=3x-122+154,x∈[0,2],当x∈0

,12􀭠􀭡􀪁􀪁时,cosθ随着x的增大而增大,则θ随着x的增大而减小,当x∈12,2􀭤􀭥􀪁􀪁时,cosθ随着x的增大而减小,则θ随着x的增大而增大.故选B.]11.D[对于A,甲同学仅选择一个选项,样本空间Ω={A,B

,C,D},能得2分的样本点为A,C,D,概率为34;对于B,乙同学仅随机选三个选项,样本空间Ω={ABC,ABD,ACD,BCD},仅在选ACD时得5分,概率为14;对于C,丙同学选择选项的样本空间Ω={A,B,C,D,AB,AC,AD

,BC,BD,CD,ABC,ABD,ACD,BCD},共14个样本点,能得分的样本点为A,C,D,AC,AD,CD,ACD,共7个,故丙同学能得分的概率为714=12;对于D,丁同学选择选项的样本空间Ω={AB,AC,AD,BC,BD,CD,ABC,ABD,ACD,BC

D},共10个样本点,能得分的样本点为AC,AD,CD,ACD,共4个,故丁同学能得分的概率是410=25.故选D.]12.D[取AD的中点O,连接PO,则PO⊥AD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,所以PO⊥平面ABCD,取BC的中点E,连接OE,以O为坐标原点,

OD,OE,OP所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,又CD=23,点Q是PD的中点,所以P(0,0,32),A(-6,0,0),D(6,0,0),Q62,0,322,C(6,23,0),对于A,平面PAD的法向量为m

=(0,1,0),CQ=-62,-23,322,m与CQ→不共线,所以CQ与平面PAD不垂直,故A错误;对于B,PC→=(6,23,-32),设平面AQC的法向量为n=(x,y,z),AQ→=362,0,322,AC→=(26,

23,0),由n·AQ→=0,n·AC→=0,即362x+322z=0,26x+23y=0,􀮠􀮢􀮡􀪁􀪁􀪁􀪁化简得3x+z=0,2x+y=0,令x=3,z=-3,y=-6,所以n=(3,-6

,-3),设PC与平面AQC所成角为θ,则sinθ=|cos<n,PC→>|=n·PC→|n||PC→|=13,故B错误;对于C,VB-ACQ=VQ-ACB=13S△ACB×12|PO|,所以VB-ACQ=13×12×26×23×12×322=3,􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋

􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋

􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋高二文科数学答案第3页,共5页故C错误;对于D,设矩形ABCD对角线的交点为G,AD=26,CD=23,所以|GA|=|GB|=|GC|=|GD|=3,G(0,3,0),Q62,0,322,GQ→=6

2,-3,322,|GQ→|=64+3+184=3,所以|GA|=|GB|=|GC|=|GD|=|GQ|=3=R,G为四棱锥Q-ABCD外接球球心,所以球的体积为V=43πR3=36π,故D正确.]13.2000解析由题设,抽样比为1204800=140,设甲设备生产的产品为x件,则x40=70

,∴x=2800,故乙设备生产的产品总数为4800-2800=2000(件).14.[-2,1]解析y=1-2x-x2可化为y-1=-2x-x2,平方变形为(y-1)2=2x-x2(y≤1),化简可得(x-1)2+(y-1)2=1(y≤1).如图所示,曲线轨迹是以(1,1)为圆心,以

1为半径的半圆,直线y=x+b与半圆有公共点,y=x+b过(0,1)点时,b=1.y=x+b与圆相切时,圆心(1,1)到y=x+b的距离d=|1-1+b|1+1=|b|2=1,b=±2,如图,b<0,所以b=-

2,所以b的取值范围是[-2,1].15.37解析直线2x+3y-6=0分别交x,y轴于A,B两点,则A(3,0),B(0,2),设A关于直线y=-x-1对称的点为A1(x,y),则yx-3=1,y2=-x+32-1,􀮠􀮢

􀮡􀪁􀪁􀪁􀪁􀪁解得x=-1y=-4,|PA|+|PB|=|PA1|+|PB|≥|A1B|=37,当A1,P,B三点共线时等号成立.16.②③④解析①点P(2,-1,3)关于yOz平面的对称点是(-2,

-1,3),故①错误;②{a,b,c}是空间的一个基底,所以a,b,c不共面,所以a+b,b+c,c+a一定能构成空间的一个基底,故②正确;对于③,∵PC→=14PA→+34PB→,∴14PC→-14PA→

=34PB→-34PC→,即AC→=3CB→,∴A,B,C三点共线,故③正确;对于④,设平面α的法向量为m=(x,y,z),由m·AB→=0,得x·0+y-z=0⇒y=z,由m·AC→=0,得x-z=0⇒x=z,取x=1.∴m=(1,1,1),m=-n,∴m∥n,∴α∥β.故④正确.17.解

(1)因为BC中点M的坐标为2+02,0+32,即M1,32,1分…………………………………所以BC边的中线所在的直线为AM,2分………因为kAM=0-32-1-1=34,3分……………………所以直线的方程为y-0=34[x-(-1)],4分……………………………………………………即所求的直

线方程为3x-4y+3=0.5分………(2)方法一设D(x,y),因为A,B,D三点不共线,所以y≠0,6分…………………………………因为AD⊥BD,且BD,AD斜率均存在,所以kAD·kBD=-1,7分…………………………………又kAD=yx+1

,kBD=yx-2,所以yx+1·yx-2=-1,9分………………………化简得x2+y2-x-2=0.因此,直角顶点D的轨迹方程为x2+y2-x-2=0(y≠0).10分……………………………………方法二设AB的中点为E,由中

点坐标公式得E12,0,6分………………………………………􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋

􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋

􀪋􀪋高二文科数学答案第4页,共5页由直角三角形的性质知|ED|=12|AB|=32.7分…………………………………………………由圆的定义知,动点D的轨迹是以E12,0为圆心,32为半径的圆,由于A,B,D三点不共线,所以应除去与x轴的交点,即y≠0,9分……………所以直

角顶点D的轨迹方程为x-122+y2=94(y≠0).10分………………………………………18.解(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A级品的概率的估计值为40100=0.

4;1分……………………………乙分厂加工出来的一件产品为A级品的概率的估计值为28100=0.28.2分……………………………(2)由数据知甲分厂加工出来的100件产品利润的频数分布表为利润5535-5-85频数402020204分………………

…………………………………因此甲分厂加工出来的100件产品的平均利润为55×40+35×20-5×20-85×20100=11;6分……由数据知乙分厂加工出来的100件产品利润的频数分布表为利润65455-75频数281734218分……………………………

……………………因此乙分厂加工出来的100件产品的平均利润为65×28+45×17+5×34-75×21100=11.8,10分………………………………………………比较甲、乙两分厂加工的产品的平均利润,厂家应选乙分厂承接加

工业务.12分……………………19.解(1)BC→=(2,1,-2),1分…………………又c∥BC→,设c=λBC→,则c=(2λ,λ,-2λ),2分……………|c|=4λ2+λ2+4λ2=9λ2=9,λ=±3,3分…………………………………………………所以c=(

6,3,-6)或(-6,-3,6).4分…………(2)a=AB→=(-1,-1,0),b=AC→=(1,0,-2),5分……………………………………………a+kb=(-1,-1,0)+(k,0,-2k)=(k-1,-1,-2k),6分……………

……………………………因为(a+kb)⊥a,所以(a+kb)·a=0,7分……所以(a+kb)·a=-(k-1)+1=-k+2=0,所以k=2.8分……………………………………(3)AB→·AC→=-1×1-1×0+0×(-2)=-1,|AB→|=2,|AC→|=

5,9分………………………cos<AB→,AC→>=AB→·AC→|AB→||AC→|=-12×5=-1010,10分………………………………………………所以sin<AB→,AC→>=1--10102=31010,11分…………………

……………………………所以S△ABC=12|AB→||AC→|·sin<AB→,AC→>=12×2×5×31010=32.12分………………20.解(1)圆C:x2+y2-2x-7=0,化成标准方程为(x-1)2+y2=8,1分…………………………圆心坐标为(1,0),2分………………

……………半径r=22,所以圆C的面积S=πr2=8π.3分…………………………………………………(2)直线l过点P(1,-2),斜率为-3,所以直线方程为y=-3(x-1)-2,4分………化为一般式为3x+y-3+2=0,圆心C(1,0)到直线l的距离d=

|3-3+2|(3)2+1=1,6分……………………………………………所以|AB|=2r2-d2=28-1=27.7分…(3)因圆上恰有三点到直线l的距离等于2,转化为圆心C(1,0)到直线l的距离为r2=2,8分…………………………………………………当直线l垂直于x轴时,

显然不符合题意;9分…………………………………………………设直线l的方程为y=k(x-1)-2,即kx-y-k-2=0,由圆心C到直线l的距离d=|k-k-2|k2+1=2k2+1=2,10分………………………………解得k=±1,11分……………………………

……故直线l的方程为x-y-3=0或x+y+1=0.12分………………………………………………􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋�

�􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋高二文科

数学答案第5页,共5页21.解(1)AB=3,BC=2,由AC2+2AB=5,知AC2=5-2AB=5-23,在△ABC中,由余弦定理得cos∠ABC=BC2+AB2-AC22AB×BC=2+3-5+232×2×3=22,2分…

……………………∵0<∠ABC<π,∴∠ABC=π4.4分……………(2)∵∠PBA+∠PBC=π4,∠PCB+∠PBC=π-∠BPC=π4,∴∠PBA=∠PCB,设∠PBA=∠PCB=α,5分……………………则在△PBC中,由正弦定理得PBsinα=BCsin3π

4,∴PB=2sinα,7分………………………………在△APB中,由正弦定理得PBsinπ6-α=ABsin5π6,∴PB=23sinπ6-α,9分……………………∴sinα=3sinπ6-α=3sinπ6cosα-cosπ6sinα,10分……………化简可得tanα=35,故tan

∠PBA=35.12分………………………………………………22.(1)证明依题意,以A为原点,AB所在直线为x轴,AD所在直线为y轴,AP所在直线为z轴,建立空间直角坐标系(如图),1分………………可得A(0,0,0),B(2,0,0),C(2,3,0),D(0,3

,0),E(2,m,0)(0≤m≤3),P(0,0,2),F1,m2,1,2分………PB→=(2,0,-2),AD→=(0,3,0),AF→=1,m2,1,由PB→·AD→=0,PB→·AF→=0,4分………………………………………………

…知PB⊥AD,PB⊥AF,又AF∩AD=A,所以PB⊥平面ADF.6分………………………(2)解设n=(x,y,z)为平面ADF的法向量,则AD→·n=0,AF→·n=0,即y=0,x+m2y+z=0,􀮠􀮢􀮡􀪁􀪁􀪁􀪁不妨令x=1,可得n=(1,0,-1)为平面ADF的一个法

向量,8分…………………………………DE→=(2,m-3,0),于是有cos<n,DE→>=n·DE→|n|·|DE→|=12,9分……所以1×2+0×(m-3)+0×(-1)1+0+1·22+(m-3)2+0=12,得m=1或m=5(舍).

11分……………………所以E(2,1,0),C(2,3,0),CE→=(0,-2,0),所以线段CE的长为2.12分……………………􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋

􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?