【文档说明】吉林省长春市东北师范大学附属中学2023-2024学年高二上学期9月月考数学试题.docx,共(4)页,242.304 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-627aa47e0fe230be7114c0e186682c62.html
以下为本文档部分文字说明:
东北师大附中2023-2024上学期阶段考试高二年级(数学)科试卷考试说明:本试卷共4页,20小题,满分120分,考试时长90分钟.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.下列叙述正确的是()A.随着试验
次数的增加,频率一定越来越接近一个确定数值B.若随机事件A发生的概率为()PA,则()01PAC.若事件A与事件B互斥,则()()PABPB+=D.若事件A与事件B对立,则()()1PAPB+=2.一张储蓄卡的密码共有6位数字,每位数字都可以从0~9中任
选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为()A.25B.15C.110D.3103.甲、乙去同一家药店购买一种医用外科口罩,已知这家药店出售A,B,C三种医用外科口罩,甲、乙购买A,B,C三种医用
口罩的概率分别如表:购买A种医用口罩购买B种医用口罩购买C种医用口罩甲0.10.4乙0.30.2则甲、乙购买的是同一种医用外科口罩的概率为()A.0.24B.0.28C.0.30D.0.324.下列结论正确的是()A
.abab−=+是a,b共线的充要条件B.若//ab,则存在唯一的实数,使得ab=C.若,,abc为空间的一个基底,则,,abbcca+++构成空间的另一个基底D.()abcabc=5.长春市地铁1号线从工农广场站到人民广场站共有4个站点,它们是工农
广场、东北师大、解放大路、人民广场.甲、乙二人同时从工农广场站上车,准备在东北师大站、解放大路站、人民广场站中的某个站点下车,假设他们在这3个站点中的某个站点下车是等可能的,则甲、乙二人在不同站点下车的概率为()A.14B
.13C.23D.346.已知空间中三点()0,1,0A,()2,2,0B,()1,3,1C−,则()A.AB与AC是共线向量B.AB的单位向量是255,,055−C.AB与BC夹角的余弦值是5511D.平面ABC的一个法向量是()1,2,5−7.同时抛掷一红一绿两枚
质地均匀的骰子,用x表示红色骰子的点数,y表示绿色骰子的点数,设事件A=“7xy+=”,事件B=“xy为奇数”,事件C=“3x”,则下列结论正确的是()A.A与B对立B.()16PBC=C.A与C相互独立D.
B与C相互独立8.如图,在直三棱柱111ABCABC−中,ABAC⊥,2AB=,11ACAA==,M、N分别是线段11AB、1AC上的点,P是直线AC上的点,满足//MN平面11BBCC,MNNP⊥,且M、N不是三棱柱的顶点,则MP长的最小值为()A.62B.
233C.52D.223二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知一个不透明袋子中装有大小、质地完全一样的1个白球、1个红球、2个黑球,现从中依次不放回地随机抽取2
个小球,事件A=“取到红球和黑球”,事件B=“第一次取到黑球”,事件C=“第二次取到黑球”,则下列结论正确的是()A.()()1PBPC+=B.()56PAB+=C.()16PBC=D.()()()PACPAPC=10.平行六面体1111ABCDABCD−的棱长都为1,AB
AD⊥,1160AABAAD==,则下列结论正确的是()A.15AC=B.1AC与平面1ABD所成角的正弦值为31010C.1AA在1AC上的投影向量为1255ACD.直线1AB与1DC之间的距离为3211.甲乙两队各派两名选手参加某次
比赛,有一名选手过关即可晋级,各选手独立完成.若甲队两名选手过关的概率分别为13,310,乙队两名选手过关的概率分别为15,16,则()A.甲队不能晋级的概率为715B.两队都晋级的概率为845C.两队都不能晋级的概率为1445D.至少有一队晋级的概率为131512.已知
正方体1111ABCDABCD−的棱长为1,点P满足1CPCDCC=+,其中0,1,0,1,以下结论正确的是()A.当1=时,1BPAC⊥B.当=时,DPAP+最小值是622+C.当1BPPC⊥时,BP的最大
值62D.1111116,2222APDCAD−−三、填空题:本题共4小题,每小题5分,共20分.13.直线l的斜率k的取值范围是3,3−,则倾斜角的范围是______.14.已知平面的一个法向量为()2,1,3n=−−,()3,2,1M−,()4,4
,1N,其中M,N,则点N到平面的距离为______.15.若三棱锥ABCD−中,ABAC⊥,BCBD⊥,1ABACADBD====,点E为BC中点,点F在棱AD上(包括端点),则异面直线AE与CF所成的角
的余弦值的取值范围是______.16.如图,甲乙做游戏,两人通过划拳(剪刀、石头、布)比赛决胜谁首先登上第3个台阶,并规定从平地开始,每次划拳赢的一方登上一级台阶,输的一方原地不动,平局时两人都上一个台阶.如果一方连续赢两次,那么他将额外获得上一级台阶的奖励,除非已经登上
第3个台阶,当有任何一方登上第3个台阶时游戏结束,则游戏结束时恰好划拳3次的概率为______.四、解答题:本题共4小题,共计40分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)袋中有7只大小形状相同颜色不全相同的小猫摆件,分别为黑猫、白猫、红猫,某同学从
中任意取一只小猫摆件,得到黑猫或白猫的概率是57,得到白猫或红猫的概率是47,试求:(1)某同学从中任取一只小猫摆件,得到黑猫、白猫、红猫的概率各是多少?(2)某同学从中任取两只小猫摆件,得到的两只小猫颜色不相同的概率是多少?18.(本小题
满分10分)在长方体1111ABCDABCD−中,1ABAD==,13AA=,点M、N分别在线段1AA,1BB上,且12AMAM=,12BNBN=.(1)求直线1DB与平面1CMN所成角的正弦值;(2)若直线1DB与平面
1CMN相交于点P,求线段DP的长度.19.(本小题满分10分)某产品在出厂前需要经过质检,质检分为2个过程,第1个过程,将产品交给3位质检员分别进行检验,若3位质检员检验结果均为合格,则产品不需要进行第2个过程,可以出厂;若3位质检员检验结果均为不合格,则产品视为不合格产品
,不可以出厂;若只有1位或2位质检员检验结果为合格,则需要进行第2个过程,第2个过程,将产品交给第4位和第5位质检员检验,若这2位质检员检验结果均为合格,则可以出厂,否则视为不合格产品,不可以出厂.设每位质检员检验结果为合格的概率均为34,且每位质检员的检验结
果相互独立.(1)求产品需要进行第2个过程的概率;(2)求产品不可以出厂的概率.20.(本小题满分10分)中国古代数学名著《九章算术》中记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”翻译为“底面
有长有宽为矩形,顶部只有长没有宽为一条棱.刍甍是茅草屋顶.”现有一个刍甍如图所示,四边形ABCD为正方形,四边形ABFE,CDEF为两个全等的等腰梯形,4AB=,//EFAB,2ABEF=,3EAEDFBFC====.