【文档说明】吉林省双辽市一中、长岭县三中、大安市一中、通榆县一中2022届高三上学期摸底联考数学文科答案.pdf,共(3)页,1.021 MB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-6157bf9c48c1e1504ad454b4e4d38b98.html
以下为本文档部分文字说明:
高三摸底文科数学参考答案及评分标准一.选择题:1.B2.C3.B4.A5.B6.B7.A8.D9.A10.C11.A12.A二.填空题:13.114.415.0或216.8三.解答题:17解:(1)由
22的列联表中的数据,可得220400m,得180m.由220100n,得320n.由300mp,得180300480p.由400400q,得800q.................
.............................................................5分(2)由独立性检验的公式,可得228002203001801007510.828400400320480K,..................
................10分因此有999%.的把握认为学生总成绩不好与数学成绩不好有关.....................12分18解:(1)sin3cos.cAaC由正弦定理得sinsin3sincosCAAC,...2分(0,),sin0,sin3cosAACC
...............................................4分tan3cossinCCC(0,),3CC.........................................................
...........................6分(2)5,21bac,由余弦定理可得222221212=255212ababaaaaa.......8分解得15ab..
........................................................................................10分故11353sin15.2224AB
CSabC..........................................12分19.解:证明:(1)连结AC,∵底面ABCD为矩形,O为BD的中点,∴AC与BD交于O点,且O为AC的中点,∵E是PC的
中点,∴OEPA∕∕,..................................................2分又PA平面PAD,OE平面PAD∴OE∕∕平面PAD.......................................
....................................5分解:(2)取AD的中点F,连结PF,..................................................6分∵PAPD,∴PFAD,...........
.................................................7分又∵平面PAD平面ABCDAD,PF平面PAD.∴PF平面ABCD,∴PF为四棱锥PABCD的高........................
...............................9分又2,22PAPDAD,∴2PF,....................................10分∴四棱锥PABCD的体积:1116242222333PABCD
ABCDVSPF矩形…………………………………………………………………………………………………12分20.(1)由椭圆的定义知442a,2a由cea知1cea2221bac所以椭圆C的方程为2212xy
................................................4分(2)由(1)知121,0,1,0FF,122FF设1122,,,AxyBxy,:1lxmy............................
.........5分联立1xmy与2212xy消x得222210mymy,...........................................6分y1+y2=2�
�2+2y1y2=−1�2+221222212myym.............................................................9分22222211222212121ABFmS
mmm.........11分当211,0mm时,2ABFS最大为2,:1lx..........12分21.解(1)当2a时,ln22fxxxx,ln1fxx由0fx得0xe
﹐由0fx得xe,所以fx在0,e上单调递减,在e,上单调递增,........3分且eelne2e22ef11ln12120f2222ln222feeee则函数
fx的最小值为2e,最大值为2...............................6分(2)由题得0x,若0fx恒成立,则ln20xax,即2lnxax恒成立令2lngxxx,则22122xgxxxx
,...............8分当02x时,0gx;当2x时,0gx,所以gx在0,2上单调递减,在2,上单调递增.......10分则min21ln2
gxg,所以1ln2a,故a的取值范围为,1ln2...........................................12分22.解解:(1)因为2sin22,所以2sincos1,故C的直角坐标方程为
1xy...............................................2分当cos0时,l的普通方程为3tan1yx;当cos0时,l的普通方程为1x......
............................5分(2)设l截曲线C所得线段的两端点对应参数为1t,2t,将1cos3sinxtyt代入1xy,得2sincos3cossin310tt
的两根即为1t,2t,.....7分所以123cossinsincostt,直线l截曲线C所得线段的中点坐标为1,3,即所对应参数0t,故3cossin0sincos,.....................................
......................................9分所以tan3,故l的斜率为3.....................................................10分……………………………………………………………………………………………
…10分23解(1)当6a时,6161fxxxxx,此时不等式9fx为619xx,∴6,619xxx或16,619xxx或1,619
xxx,解得7x或2x≤,即所求不等式解集为,27,.(2)∵11axxaxx,∴11axxa,又220fxa对任意xR成立,∴212aa,∴112a,∴所求实数a的最大值为
1.………………………………………………………………………………………………10分