【文档说明】2023年高考考前押题密卷数学试题(天津卷)数学(天津卷)(参考答案).docx,共(11)页,468.488 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-5ae9195c0c1341a013d2612b2559a43f.html
以下为本文档部分文字说明:
2023年高考考前押题密卷数学·参考答案一、选择题(本题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)123456789ABACCCADC二、填空题:(本题共6小题,每小题5分,共30分。试题中包含两个空的,答对1个的
给3分,全部答对的给5分。)10、一11、3612、413、10112514、2715、2,22−.三、解答题(本题共5小题,共75分,解答应写出文字说明、证明过程或演算步骤。)16.(14分)【详解】(1
)在ABC中,由正弦定理sinsinsinabcABC==可得:()22332acbac−=−,整理得222223acbac+−=,...............................2分由余弦定理,可得2cos3B=;...............................
4分(2)(i)由(1)可得5sin3B=,又由正弦定理sinsinabAB=,及已知53ab=,可得sin355sin535aBAb===,...............................6分
由已知53ab=,可得ab,故有AB,A为锐角,可得25cos5A=,1tan2A=,...............................8分则π1tantan1π42tan()3π141tantan142AAA+++===−−;......................
.........9分(ii)由(i)可得23cos212sin5AA=−=,4sin22sincos5AAA==,...............................11分4331433sin2si
n2coscos2sin666525210AAA++=+=+=................................14分17.(15分)【详解】(1)由111ABCABC-为正三棱柱可知,1BB
⊥平面ABC,又CD平面ABC,所以1BBCD⊥,...............................1分由底面是边长为2的正三角形,D为AB的中点,所以CDAB⊥;........................
.......2分又1BBABB=,1,BBAB平面11ABBA,所以CD⊥平面11ABBA;...............................3分又1AD平面11ABBA,所以1CDAD⊥;...............................
4分(2)取线段11,ACAC的中点分别为,OE,连接1,OBOE,易知11,,OBOEOC两两垂直,以O为坐标原点,分别以11,,OCOEOB所在直线为,,xyz轴建立空间直角坐标系Oxyz−,如下图所示;由侧棱长为2,底面边长为2可得,()()()()()111,0
,0,1,2,0,1,2,0,0,2,3,0,0,3ACABB−−,...............................6分由D为AB的中点可得13,2,22D−,所以()1332,2,0,,0,22ACDC==−
uuuruuur,设平面1DAC的一个法向量为(),,nxyz=,则122033022nACxynDCxz=+==−=,令1x=,可得2,3yz=−=;即()1,2,3n=−r;.....................
..........8分易得()10,0,3OB=uuur即为平面1ACA的一个法向量,所以11132cos,263nOBnOBnOB===ruuurruuurruuur,...............................9
分设二面角1DACA−−的平面角为,由图可知为锐角,所以12coscos,2nOB==ruuur,即π4=;即二面角1DACA−−的大小为π4................................10分(3)由(2)可知()2,0,0CA=−
uur,平面1DAC的一个法向量为()1,2,3n=−r,......................12分设直线CA与平面1ACD所成的角为,所以26sincos,626nCAnCAnCA−====ruurruurruur,...........
....................15分即直线CA与平面1ACD所成角的正弦值为66.18.(15分)【详解】(1)∵12nnaa+−=,∴数列na是公差为2d=等差数列,且864S=,∴18782642a+=,解得11a=,............
...................1分∴()12121nann=+−=−;...............................2分设等比数列nb的公比为q(0q),∵13b=,3218bb−=,23318qq−=,即260q
q−−=,...............................3分解得2q=−(舍去)或3q=,∴1333nnnb−==...............................4分(2)由(1)得()()()21222121213nnnnnnnacaabnn+++−−==−+.
.....................................5分()()()()122111212132213213nnnnnnnn−+=−−+−+=...........................
...............6分()()0112231111111112133333535373213213nnnn=−+−+−++−−+()0111213213nn−+=()11222
13nn−+=...............................................................8分(3)方法一:∵()12221,21,N1,2,Nnnnnnankkadnkkb+−=−+==,()()224621352
1nnnSdddddddd−=+++++++++()3121352112311111nnnnaaaaaaaabbbb−++++=+++++−+−++−()()1232462159131433333nnnn
=+++++−+−++−−nnPQ=+.....................................................................................................
10分12324623333nnnP=++++①23411246222333333nnnnnP+−=+++++②两式相减得,123411112112222222212233311133333
33333313nnnnnnnnnnnnP++++−+=+++++−=−=−−=−−,1323323123223nnnnnP+++=−=−,...............................................
...............12分当n为偶数时,()21159131nnnQa−=−+−++−()()()()159134743444422nnnn=−++−+++−−+−=+++==,...................
............13分当n为奇数时,()()144443443212nnQnnn−=+++−−=−−=−+21,21,N2,2,NnnnkkQnnkk−+=−==,..
....................................14分121323121,21,N2332312,2,N23nnnnnnnnkkSPQnnnkk+++−−+=−=+=+−+=...................
....................15分方法二:()()22121211,,21,211,nknknknknaannkbbdankan+−++===−=−−为偶数为奇数()()()()1121232,2,2
2333143,21143,21kkkkkkkknknkknkknk−++−====−−=−−−=−......................................10
分()2462011211355721233232333333223nnnnnnnnPdddd−+++=++++=−+−++−=−...............................
.......12分当n为偶数时,()21159131nnnQa−=−+−++−()()()()159134743444422nnnn=−++−+++−−+−=+++==
,..................................13分当n为奇数时,()()144443443212nnQnnn−=+++−−=−−=−+.....................................
.14分21,21,N2,2,NnnnkkQnnkk−+=−==,121323121,21,N2332312,2,N23nnnnnnnnkkSPQnnnkk+++−−+=−=+=+−+=....................
...................15分19.(15分)【详解】(1)解:当点P为椭圆C短轴顶点时,PAB的面积取最大值,且最大值为112222ABbabab===,......................................2分由题意可得22232
2caabcab===−,解得213abc===,......................................4分所以,椭圆C的标准方程为2214xy+=..................
.....................5分(2)解:①设点()11,Pxy、()22,Qxy.若直线PQ的斜率为零,则点P、Q关于y轴对称,则12kk=−,不合乎题意.设直线PQ的方程为xtyn=+,由于直线PQ不过椭圆C的左、右焦点,则2n,联立2244xtynxy=++=
可得()2224240tytnyn+++−=,()()()22222244441640tntntn=−+−=+−,可得224nt+,......................................6分由韦达定理可得12224tnyyt+=−+,212244nyy
t−=+,则()2121242ntyyyyn−=+,...............................7分所以,()()()()()()()()212121121112221212122122422222422222nyynytynytyynykyxnnkxytynytyynyy
ynyn−++−+−+−−====−++++++++()()()()1211222222522223nyynynnnnyynyn++−−−===+−+++,解得12n=−,......................
................9分即直线PQ的方程为12xty=−,故直线PQ过定点1,02M−.......................................10分②由韦达定理可得1224tyyt+=+,()1221541yyt=−+,所以,()2121
2121211·422SSAMBMyyyyyy−=−−=+−()22222222211541544154124444151415415ttttttttt++=+===++++++++,.............................
.........12分20t,则241515t+,因为函数()1fxxx=+在)15,+上单调递增,故22111615415151515415tt+++=+,所以,124154161515SS−=,当且仅当0=t时,等号成立,.....................
.................15分因此,12SS−的最大值为154.20.(16分)【详解】(1)()22e12e22xfxxxx−=−+=,......................................1分当e02x,
()0fx;当e2x,()0fx¢>,故()fx的减区间为e02,,()fx的增区间为e,2+.......................................3分(2)(ⅰ)因为过(),ab有三条不同的切线,设切点为()()
,,1,2,3iixfxi=,故()()()iiifxbfxxa−=−,......................................4分故方程()()()fxbfxxa−=−有3个不同的根,该方程
可整理为()21eeln022xaxbxxx−−−−+=,设()()21eeln22gxxaxbxxx=−−−−+,则()()22321e1e1e22gxxaxxxxxx=−+−+−−+
()()31exxax=−−−,......................................5分当0ex或xa时,()0gx;当exa时,()0gx,故()gx在()()0,e,
,a+上为减函数,在()e,a上为增函数,因为()gx有3个不同的零点,故()e0g且()0ga,故()21eeelne0e2e2eab−−−−+且()21eeln022aaabaaa−−−−+,整理得到:12eab+且()eln2bafaa+=,.....
.................................6分此时()1e13e11lnln2e2e22e222aaabfaaaaa−−−+−+−+=−−,设()3eln22uaaa=−−,则()2e-202auaa=,.................
.....................7分故()ua为()e,+上的减函数,故()3elne022eua−−=,故()1012eabfa−−.......................................8分(ⅱ)当0e
a时,同(ⅰ)中讨论可得:故()gx在()()0,,e,a+上为减函数,在(),ea上为增函数,不妨设123xxx,则1230exaxx,因为()gx有3个不同的零点,故()0ga且()e0g,故()21eeelne0e2e2eab−−
−−+且()21eeln022aaabaaa−−−−+,整理得到:1ln2e2eaaba++,......................................9分因为123
xxx,故1230exaxx,又()2ee1ln2aagxxbxx+=−+−+,设etx=,()0,1eam=,则方程2ee1ln02aaxbxx+−+−+=即为:2eln0e2eaatttb+−+++=即为()21ln02mmtttb−+
+++=,记123123eee,,,tttxxx===则123,,ttt为()21ln02mmtttb−++++=有三个不同的根,设3131e1xtktxa==,1eam=,要证:22132e112ee6e6eaaxxa−−++−,即证13e2ee26e6eaatta−−++
−,即证:13132166mmttm−−+−,即证:13131321066mmttttm−−+−+−+,即证:()()()2131313122236mmmttmmtt−−++−−+,...
...................................11分而()21111ln02mmtttb−++++=且()23331ln02mmtttb−++++=,故()()()22131313lnln102mttttmtt−+−−+−=,故1
31313lnln222ttttmmtt−+−−=−−,......................................12分故即证:()()()21313131312lnln236mmmttmttmtt−−+−−
−+,即证:()()()1213313ln1312072tttmmmttt+−−++−即证:()()()213121ln0172mmmkkk−−+++−,记()()1ln,11kkkkk+=−,则()
()2112ln1kkkkk=−−−,设()12lnukkkk=−−,则()2122210ukkkkk=+−−=,所以()()10uku=,()0k,故()k在()1,+上为增函数,故()1km,所以()()()()()()221312
13121ln1ln172172mmmmmmkkmmkm−−+−−+++++−−,................................13分记()()()()()211312ln,01721mmmmmmmm−−−+=++,则()()
()()()()()2232322132049721330721721mmmmmmmmmmm−−−+−+=++,所以()m在()0,1为增函数,故()()10m=,......................................15分故()(
)()()211312ln0721mmmmmm−−−+++即()()()213121ln0172mmmmmm−−+++−,故原不等式得证:......................................16分获得更多资源请扫码加入享
学资源网微信公众号www.xiangxue100.com