安徽省定远县育才学校2020-2021学年高二上学期开学考试数学试题含答案

DOC
  • 阅读 4 次
  • 下载 0 次
  • 页数 9 页
  • 大小 772.500 KB
  • 2024-09-05 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
安徽省定远县育才学校2020-2021学年高二上学期开学考试数学试题含答案
可在后台配置第一页与第二页中间广告代码
安徽省定远县育才学校2020-2021学年高二上学期开学考试数学试题含答案
可在后台配置第二页与第三页中间广告代码
安徽省定远县育才学校2020-2021学年高二上学期开学考试数学试题含答案
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的6 已有4人购买 付费阅读2.40 元
/ 9
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】安徽省定远县育才学校2020-2021学年高二上学期开学考试数学试题含答案.doc,共(9)页,772.500 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-51f7c31a5860ab5df7ebfec447cf2290.html

以下为本文档部分文字说明:

2020-2021学年第一学期开学考试高二数学第I卷(60分)一、选择题(共12小题,每小题5分,共60分。)1.在ABC中,已知ax,2b,045B,如果三角形有两解,则x的取值范围是()A.222xB.

22xC.22xD.02x2.在等差数列na中,已知2724aa,则8S()A.64B.79C.88D.963.已知向量a与b的夹角是120,且5a,4b,则ab=()A.20B.10C.10D.204.在△ABC中,已知A

=30°,C=45°,a=2,则△ABC的面积等于()A.2B.31C.22D.13125.已知43sinsin35,则sin6的值是()A.45B.45C.235D.2356.若等比数列的前项和,其公

比为()A.B.C.D.7.设偶函数()fx的定义域为R,当[0,)x时,()fx是增函数,则(2)f,()f,(3)f的大小关系是()A.()(3)(2)fffB.()(2)(3)fffC.()(3)(2)fffD.()(2)(3)fff

8.将函数cos3yx的图象上各点横坐标伸长到原来的2倍(纵坐标不变),再向左平移6个单位,所得函数图象的一条对称轴是()A.4xB.6xC.xD.2x9.已知向量1,2a,2,3b.若向量c满足cab,cab

,则c()A.77,93B.77,39C.77,39D.77,9310.设M是ABC内一点,且ABCS的面积为2,定义,,fMmnp,其中,,mnp分别是MBC,MCA,MAB的面积,若ABC内一动点

P满足1,,fPxy,则14xy的最小值是()A.1B.4C.9D.1211.已知向量1331,,,2222ABBC,则ABC()A.030B.060C.0120D.015012.已知函数fx是定义在R上的偶函数,对任意xR

,都有42fxfxf成立,那么函数fx可能是()A.12sin2fxxB.212cos4fxxC.212cos2fxxD.2cos2fxx第II卷(90分)二、填空题(共4小题

,每小题5分,共20分)13.已知π2cos63,则2πsin3________________.14.已知函数222fxxaxa,若集合|0AxNfx中有且只有一个元素,则实数a的取

值范围为_____________.15.在△ABC中,D为BC中点,直线AB上的点M满足:3233AMADACR,则AMMB__________.16.已知等差数列na的前n项和为nS,且2718aa,8S________

__.三、解答题(共6小题,共70分)17.(12分)设函数2lg2fxxxa.(1)求函数fx的定义域A;(2)若对任意实数m,关于x的方程fxm总有解,求实数a的取值范围.18.(10分)在ABC中,角,,ABC所对的边分别为,,abc,且满足25co

s25A,•3ABAC.(1)求ABC的面积;(2)若6bc,求a的值.19.(12分)已知函数23sin22cosfxxx.(1)求π6f的值;(2)求fx的单调递增区间.20.

(12分)已知函数sin(0,0)fxx部分图象如图所示,点P为fx与x轴的交点,点A,B分别为fx的图象的最低点与最高点,2PAPBPA(1)求的值;(2)若1,1x,求fx的取值范围.21.(12分)已

知数列na的前项和为,且有12a,113532nnnnsaasn,(1)求数列na的通项公式;(2)若*nnbna,求数列nb的前项和nT.22.(12分)已知函数2221xxaafx,其中a为

常数.(1)判断函数fx的单调性并证明;(2)当1a时,对于任意2,2x,不等式2620fxmfmx恒成立,求实数m的取值范围.参考答案1.A2.D3.C4.B5.A7.A8.D9.D10.C11.B

12.B13.2314.12,2315.116.7217.解析:(1)由2lg2fxxxa有意义222110xxaxa当1a时,fx的定义域为AR当1a时,fx

的定义域为1Axx当1a时,fx的定义域为1111Axxaxa或(2)对任意实数mR方程fxm总有解,等价于函数2lg2fxxxa的值域为R则22txxa的值域为0,,则220xxa

至少有一解,440,1aa,实数a的取值范围,1.18.解析:(1)∵25cos25A∴234cos2cos1,sin255AAA∵3ABAC∴cos3bcA∴5bc∴ABC的面积1sin22ABCSbcA

(2)∵5bc,6bc∴5,1bc或1,5bc由余弦定理得2222cos20abcbcA∴25a19.(1)函数23sin22cosfxxx,∴22πππ333sin22cos3266622f

0;(2)21cos2π3sin22cos3sin223sin2cos212sin2126xfxxxxxxx令πππ2π22π262kxk,kZ,解得π

πππ63kxk,kZ;所以函数fx的单调递增区间是πππ,π63kkkZ.20.(1)2(2)当02,fx的值域为cos,1;当2时,fx的值域为cos,1.解析:(1)设0,0,Pxfx最小正周

期为T,,则0013,1,,144AxTBxT,所以13,1,,144PATPBT222311,11616PAPBTPAT,解得T=4,

所以2.2T(2)由(1)知,sin2fxx,T=4,由22,222kxkkZ得221414,kxkkZ所以fx的增区间为2214,14kk

,减区间为2214,34kkkZ因为0,所以2141414,kkkkZ当0k时,2111所以fx在区间21,1

上为增函数,在区间21,1为减函数,所以当1,1x时,max211fxf易知21x为fx图象的一条对称轴.所以当221111,即,

min1sincos2fxf当221111,即02时,min1sincos2fxf

综上,当02,fx的值域为cos,1;当2时,fx的值域为cos,1.21.(1)2nna;(2)121*2nnTn.(1)由题意知113354nnnnssaa2n∴12nnaa,12nn

aa,又∵12a,∴na是以2为首项,2为公比的等比数列.∴2nna(2)由已知得2nnbn,231*22*23*2......*2nnTn,123421*22*23*2......1*2*2nn

nTnn,两式相减,得11212*21*2212nnnnTnn所以得到121*2nnTn.22.解析:(1)函数21222121xxxafx

a在R上是增函数.证明如下:任取1x,2xR,且12xx,则121212122222221212121xxxxxxfxfxaa,∵12xx,∴122

20xx,1210x,2210x,∴120fxfx,∴12fxfx,∴函数221xfxa在R上是增函数.(2)由(1)知函数在定义域上是增函数,当1a时,2121xxfx,则2121xxfx1212xxfx

,∴函数fx是奇函数,则对于任意2,2x,不等式2620fxmfmx恒成立,等价为对于任意2,2x,不等式2622fxmfmxfmx恒成立,即262xmmx,在2,2x恒成立即2260xmxm,在

2,2x恒成立,设226gxxmxm,则等价为min0gx即可.即222266gxxmxmxmmm,当2m,则函数gx的最小值为25100gm,得2m,不成立,当22m,则函数

gx的最小值为260gmmm,得22m,当2m,则函数gx的最小值为23100gm,得1023m.综上1023m.

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 324638
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?