【文档说明】广东省深圳外国语学校2024-2025学年高三上学期9月月考试题 数学 Word版含答案.docx,共(7)页,484.854 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-48abfbcf871c2b4f3450835e65a8408f.html
以下为本文档部分文字说明:
深圳外国语学校2024-2025学年度高三第一学期第二次月考数学试题试卷共4页,卷面满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在
答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合22Axyxx==−,21xByy==+,则AB=()A.(
1,2B.(0,1C.1,2D.0,22.已知命题:1,1pxx,则命题p的否定为()A.1,1xxB.1,1xxC.1,1xxD.1,1xx3.设函数()()3xxafx−=在区间30,2
上单调递减,则实数a的取值范围是()A.(),1−−B.)[3,0−C.(0,1D.)3,+4.函数()1cosexxxfx−=图象大致为()A.B.C.D.的5.设正实数a、b、c满足2240aabbc−+−=,则当cab
取得最小值时,236abc+−的最大值为()A.1B.2C.3D.46.已知函数()fx的定义域为(),exyfx=+R是偶函数,()3exyfx=−是奇函数,则()ln3f的值为()A.73B.3C.103D.1137.根据公式3sin33sin4s
in=−,sin10的值所在的区间是()A.11,76B.11,65C.11,54D.11,438.已知函数()()()22241,fxmxmxgxmx=−
−+=,若对于任意的实数(),xfx与()gx至少有一个为正数,则实数m的取值范围是()A.()0,2B.()0,8C.)2,8D.(),0−二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对
但不全的得部分分,有选错的得0分.9.下列说法正确的是()A.若函数()fx定义域为1,3,则函数()21fx+的定义域为0,1B.若定义域为R的函数()fx值域为1,5,则函数()21fx+的值域为0,2C.函数15x
y=与5logyx=−的图象关于直线yx=对称D.ab成立的一个必要条件是1ab−10.若log1ab,则下列不等式一定成立是()A.abB.1abab++C.11abab−−D.11ab
ab++11.已知定义在R上的偶函数()fx和奇函数()gx满足()()21fxgx++−=,则()A.()fx的图象关于点()2,1对称B.()fx是以8为周期的周期函数C.()()8gxgx+=的D.20241(42)2025kfk=−=三、填空
题:本题共3小题,每小题5分,共15分.12.已知函数()cos2fxx=,则0ππ()()66limxfxfx→+−=______.13.已知函数223,2()(06log,2axxxfxaxx−++=+
且1)a,若函数()fx值域是(,4−,则实数a的取值范围是_______14.若()e1xaxb++对一切xR恒成立,则()1ab+的最大值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步
骤.15.设函数()32.fxxaxbxc=+++(I)求曲线().yfx=在点()()0,0f处的切线方程;(II)设4ab==,若函数()fx有三个不同零点,求c的取值范围16.记ABCV的角,,ABC的对边分别为,,abc,已知sin
sinsinABCbcab−=++.(1)求A;(2)若点D是BC边上一点,且,2ABADCDBD⊥=,求sinADB的值.17.如图,四棱锥PABCD−中,底面ABCD是边长为2菱形,π3ABC=,已知E为棱AD的中点,P在底面的投影H为线段EC的中点,M是棱PC上一点.(1
)若2CMMP=,求证://PE平面MBD;(2)若,PBEMPCEC⊥=,确定点M的位置,并求二面角BEMC−−的余弦值.18.已知函数()()()2ln1cos2gxxx=−−+−−.(1)函数()fx与()gx的图像关于1x=−对称,求()fx的解析式;的的(2)()1fxax−在定
义域内恒成立,求a的值;(3)求证:2111ln42nknfk=+−,*Nn.19.设自然数3n,若由n个不同的正整数1a,2a,…,na构成的集合12,,,nSaaa=满足:对集合S的任何两个不同的非空子集A、B,A中所有元素之和与B中所有元素之和均不相等,则称集合S具有
性质P.(1)试分别判断在集合11,2,3,4S=与21,2,4,8S=是否具有性质P,不必说明理由;(2)已知集合12,,,nSaaa=具有性质P.①记121kikiaaaa==+++L,求证:对于任意正整数
kn,都有121kkiia=−;②令12iiida−=−,1kkiiDd==,求证:0kD≥;(3)在(2)条件下,求12111naaa+++的最大值.的深圳外国语学校2024-2025学年度高三第一学期第二次月考数学试题试卷共4页,卷面满
分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,
只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.【1题答案】【答案】A【2题答案】【答案】A【3题答案】【答案】D【4题答案】【答案】A【5题答案】【答案】D【6题答案】【答案】D【7题答案】【答案】B【8题答案】【答案】B二、
多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.【9题答案】【答案】AC【10题答案】【答案】
BD【11题答案】【答案】ABC三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】3−【13题答案】【答案】2,12【14题答案】【答案】e2四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)ybx
c=+(2)320,27c【16题答案】【答案】(1)2π3(2)217【17题答案】【答案】(1)证明见解析(2)M为PC中点,5719.【18题答案】【答案】(1)()()2ln1cosfxxx=
++,()1x−(2)2a=(3)证明见解析【19题答案】【答案】(1)1S不具有性质P.2S具有性质P.(2)见解析(3)12111naaa+++的最大值为1122n−−.