【文档说明】01(新高考地区专用,集合与逻辑+不等式+函数+指数函数)高一数学期中模拟卷01(参考答案).docx,共(4)页,230.658 KB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-41a23c7da52ef4d36bedae36a63b6526.html
以下为本文档部分文字说明:
2024-2025学年高一数学上学期期中模拟卷参考答案一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。12345678CDACBDCC二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项
中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.91011ACDACDABD三、填空题:本题共3小题,每小题5分,共15分.12.[1,5]13.314.②③④四、解答题:本题共5小题,共77分.解答应写出文字说
明、证明过程或演算步骤.15.(13分)【详解】(1)原式()1212233214212222424134−=−−+=−+=−=...........................6分(2)由11223(0)aaa−+=,
而111222()27aaaa−−+=+−=,.................................................9分则2212()247aaaa−−+=+−=,故22114716171aaaa−−+++==++
+..........................................................13分16.(15分)【详解】(1)由题设3B=,则{|34}ABxx=−,..........
..............................................3分R{|3Axx=−ð或4}x,则()AB=RIð..............................
.................................................6分(2)由ABABA=,..............................................................
.......................................8分若B=时,1212kkk+−,满足;.............................................................................10分若
B时,12151322214kkkkk+−+−−;..................................................................................14分综上,52k........
..........................................................................................................................15分17.(15分)【详解】(1)函数()
fx是定义在R上的奇函数,即函数()fx的图象关于原点对称,则函数()fx图象如图所示................................................................2分故函数的单调递减区间为(,2),(2,)−−+,单调递增区间为(2,2)−
;....4分(2)根据题意,令0x,则0x−,则2()4fxxx−=−,又因为函数()fx是定义在R上的奇函数,所以2()()4fxfxxx−=−=−,即2()4fxxx=−+,............................
........................................................6分所以224,0()4,0xxxfxxxx+=−+...................................................
......................8分(3)当[2,4]x时,2()4fxxx=−+,则22()4(3)4(7)4gxxxaxxax=−++−+=−+−+,其对称轴为72ax-=,...........................................
...................................9分当732a−时,即1a,则min()(4)164gxga==−,...........................11分当732a−时,即1a
,则min()(2)142gxga==−,............................13分故min164,1()142,1aagxaa−=−...............................
..............................................15分18.(17分)【详解】(1)因为()()240,12xxaafxaaaa+−=+,Rx,定义域关于原点对称,令0x=,所以()2002afa−==+,故2a=,.........
..........................................................2分则()()21R21xxfxx−=+,()()211221211221xxxxxxf
xfx−−−−−−===−=−+++,所以()fx为定义在R上的奇函数,故2a=...................................................................4分(2)()2121xxfx−=
+是R上的增函数.证明:任取12,Rxx,且12xx,()()()()()()()()()()()1221121212121212212121212222121212121212121xxxxxxxxxxxxxxfxfx−+−−+−−−−=−==++++++,....
..6分因为12xx,所以1210x+,2210x+,12022xx,所以12220xx−,()()1221210xx++,所以()()120fxfx−,即()()12fxfx,所以()fx是R上的增函
数........................................................................................................9分(3)当
1,2x时,不等式()·22xtfx−即()()222121xxxt−+−,...................................11分故()()222222112121xxxxxt−−=−−+−−,则令21xv=−,由题意可知1,
3v,21tvv−+,....................................................13分因为函数yx=,2yx=−为1,3上的增函数,故21yvv=−+在1,3v上单调递增,故mi
n2211101vv−+=−+=,所以0t...........................................................................................
.........................................17分19.(17分)【详解】(1)对于()2xfx=,定义域为R,显然定义域D中任意实数x有xD−成立,又()()221xxfxfx−−==,()2xfx=是倒函数,.............
...............................................................................................3分对于1()1xgx
x+=−,定义域为{|1}xx,故当=1x−时,1{|1}xxx−=,不符合倒函数的定义,所以1()1xgxx+=−不是倒函数;.........................................................
............................................6分(2)因为2()1()()fxFxfx−=1()()fxfx=−,又()yfx=是R上的倒函数,所以1()()fxfx−=,所以()()()Fxfxfx=−−,故1211
22()()()()()()FxFxfxfxfxfx+=−−+−−,.................................................................9分充分性:当120xx+时,12xx−且21xx−,
又()fx在R上是严格增函数,所以12()()fxfx−,21()()fxfx−,所以12()()0fxfx−−,21()()0fxfx−−,故12()()0FxFx+..............................................
12分必要性:当12()()0FxFx+时,有121211()()()()fxfxfxfx−+−121212()()()()()()fxfxfxfxfxfx+=+−121212()()1()()()()fxfxfxfxfxfx−=+0,....
.........................................................................................15分又()fx恒大于0,所以12()()1fx
fx11()()fxfx=−,因为1()0fx,所以21()()fxfx−,因为()fx在R上是严格增函数.所以21xx−,即有120xx+成立.综上所述:120xx+是12()()0FxFx+的充要条件..................................
.................................17分