【文档说明】??32.docx,共(4)页,48.199 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-3eef323421c7a2ec2ee8a29e90023a00.html
以下为本文档部分文字说明:
专练32数列求和授课提示:对应学生用书67页[基础强化]一、选择题1.若数列{an}的通项公式为an=2n+2n-1,则数列{an}的前n项和为()A.2n+n2-1B.2n+1+n2-1C.2n+1+n2-2D.2n+n-2答案:C解析:Sn=(2+22+…+2n)+(1+3
+5+…+2n-1)=2(1-2n)1-2+(1+2n-1)n2=2n+1-2+n2.2.等差数列{an}的公差为2,若a2,a4,a8成等比数列,则{an}的前n项和Sn=()A.n(n+1)B.n(n-1)C.n(n+1)2D.n(n-1)2答案:A解析:∵a2,a4,a8成等比数列,∴a2
4=a2a8,∴(a1+3d)2=(a1+d)(a1+7d),得a1=d=2,∴Sn=na1+n(n-1)2d=n(n+1).3.数列1,11+2,11+2+3,…,11+2+3+…+n,…的前n项和为()A.nn
+1B.2nn+1C.4nn+1D.n2(n+1)答案:B解析:∵11+2+3+…+n=2(1+n)n=21n-1n+1,∴Sn=21-12+12-13+…+1n-1n+1=2
1-1n+1=2nn+1.4.数列1n+1+n的前2018项的和为()A.2018+1B.2018-1C.2019+1D.2019-1答案:D解析:∵1n+1+n=n+1-n,∴S2018=2-1+3-2+…+2019-2018=2019-1.5.已知数
列{an}满足an+1+(-1)n+1an=2,则其前100项和为()A.250B.200C.150D.100答案:D解析:当n=2k-1时,a2k+a2k-1=2,∴{an}的前100项和S100=(a1+a2)+(a3+a4)+…+(
a99+a100)=50×2=100,故选D.6.已知数列{an}满足:an+1=an-an-1(n≥2,n∈N*),a1=1,a2=2,Sn为数列{an}的前n项和,则S2018=()A.3B.2C.1
D.0答案:A解析:∵an+1=an-an-1,a1=1,a2=2,∴a3=1,a4=-1,a5=-2,a6=-1,a7=1,a8=2,…,故数列{an}是周期为6的周期数列,且每连续6项的和为0,故
S2018=336×0+a2017+a2018=a1+a2=3.故选A.7.若数列{an}的通项公式为an=2n+1,令bn=1a1+a2+…+an,则数列{bn}的前n项和Tn为()A.n+12(n+2)B.34-
2n+32(n+1)(n+2)C.n-1n+2D.34-2n+3(n+1)(n+2)答案:B解析:因为a1+a2+…+an=n(3+2n+1)2=n(n+2),所以bn=1n(n+2)=121n-1n+2,故Tn=121+12
-1n+1-1n+2=34-2n+32(n+1)(n+2),故选B.8.已知数列{an}中,a1=a2=1,an+2=an+2,n是奇数,2an,n是偶数,则数列{an}的前20项和为()A.1121B.1122C.1123D.11
24答案:C解析:由题意可知,数列{a2n}是首项为1,公比为2的等比数列,数列{a2n-1}是首项为1,公差为2的等差数列,故数列{an}的前20项和为1×(1-210)1-2+10×1+10×92×2=1123.选C.9.(多选)[2024·河北省六校联考]等差数列{an}的前n项和记为Sn
,若a1>0,S10=S20,则()A.公差d<0B.a16<0C.Sn≤S15D.当且仅当Sn<0时n≥32答案:ABC解析:因为S10=S20,所以a11+a12+…+a19+a20=5(a15+a16)=0,又a1>0,所以a1
5>0,a16<0,所以d<0,Sn≤S15,故ABC正确;因为S31=31(a1+a31)2=31a16<0,故D错误.故选ABC.二、填空题10.设Sn为等差数列{an}的前n项和,已知a1+a3+a11=6,则S9=____
____.答案:18解析:设等差数列{an}的公差为d.∵a1+a3+a11=6,∴3a1+12d=6,即a1+4d=2,∴a5=2,∴S9=(a1+a9)×92=2a5×92=18.11.设数列{an}满足a1=1,且an+1-an=n+1
(n∈N*),则数列1an的前10项的和为________.答案:2011解析:∵an+1-an=n+1,∴当n≥2时,a2-a1=2,a3-a2=3,a4-a3=4,…,an-an-1=n,∴an-a1=(2+n)(n-1)2,∴an=1+(n+2)(n-1)2=n2+n2(n≥2
)又当n=1时a1=1符合上式,∴an=n2+n2∴1an=2n2+n=21n-1n+1,∴S10=21-12+12-13+…+110-111=21-111=2011.12.[2024·黑龙江省牡丹江市第二高级中学段考]若i是虚
数单位,则i+2i2+3i3+…+2023i2023=________.答案:-1012-1012i解析:设S=i+2i2+3i3+…+2023i2023,则iS=i2+2i3+3i4+…+2023i2024,两式相减得(
1-i)S=i+i2+i3+…+i2023-2023i2024=i(1-i2023)1-i-2023i2024=i(1+i)1-i-2023=-1-2023=-2024,故S=-20241-i=-2024(1+i)(1-i)(1+i)=-1012-1012i.[能力提升]13.已知数列{an}
满足2an=an+1+an-1(n≥2,n∈N),且a1=1,a5=9,bn=Cn-199·an,则数列{bn}的前100项的和为()A.100×299B.100×2100C.50×299D.50×2101答案:A解析:由2an=an+1+an-1知{an}为等差数列,又a1=1,a5=
a1+4d,∴d=2,`∴an=1+(n-1)×2=2n-1,∴{bn}的前100项的和S100满足:S100=C099a1+C199a2+…+C9999a100,∴S100=C9999a100+C9899a99+…+C099a1=C099a100
+C199a99+…+C9999a1,∴2S100=(a1+a100)(C099+C199+C299+…+C9999)=200×299,∴S100=100×299.14.已知数列{an}满足2a1+22a2+…+2nan=n(n∈N*
),数列1log2anlog2an+1的前n项和为Sn,则S1·S2·S3·…·S10=()A.110B.15C.111D.211答案:C解析:∵2a1+22a2+…+2nan=n(n∈N*),∴2a1
+22a2+…+2n-1an-1=n-1(n≥2),∴2nan=1(n≥2),当n=1时也满足,故an=12n,故1log2anlog2an+1=1log22-nlog22-(n+1)=1n(n+1)=1n-1n+1,Sn=1-12+12-1
3+…+1n-1n+1=1-1n+1=nn+1,∴S1·S2·S3·…·S10=12×23×34×…×910×1011=111,选C.15.设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn=________.答案:-1n解析:
∵an+1=SnSn+1=Sn+1-Sn,∴1Sn+1-1Sn=-1,∴数列1Sn为等差数列,∴1Sn=1S1+(n-1)×(-1)=-n.∴Sn=-1n.16.把一个等腰直角三角形对折一次后再展开得到的图形如图所示,则图中等腰直角三角形(折痕所
在的线段也可作为三角形的边)有3个,分别为△ABC,△ABD,△ACD,若连续对折n次后再全部展开,得到的图形中等腰直角三角形(折痕所在的线段也可作为三角形的边)的个数记为an,则a4=________,数列{an}的前n项和为________.答案:312n+2-4-n解
析:由题意得a1=22-1,a2=23-1,a3=24-1,a4=25-1=31,所以an=2n+1-1,则数列{an}的前n项和为22-1+23-1+24-1+…+2n+1-1=22+23+24+…+2n+1-n=22(1-2n)1-2-n=2n+2-4-n.