【文档说明】四川省成都外国语学校2020-2021学年高一下学期第三次(6月)月考数学(文)答案.docx,共(3)页,181.209 KB,由小赞的店铺上传
转载请保留链接:https://www.doc5u.com/view-3c3fef3a26f9464f916144085f3891e6.html
以下为本文档部分文字说明:
6月月考高一文科数学答案BCABADBDCACB13.63−14.111n−+(或1nn+)15.-1016.1400012.解:不等式𝒙+𝟒√𝒙𝒚≤𝒎(𝟑𝒙+𝒚)对所有正数x,y均成立,可得1+4√𝑦𝑥≤m(3+𝑦𝑥),可设t=√𝑦𝑥(t>0),上式即为1+4t≤m
(3+t2),可得m≥1+4𝑡3+𝑡2恒成立,再设1+4t=m(m>1),可得1+4𝑡3+𝑡2=𝑚3+(𝑚−14)2=16𝑚𝑚2−2𝑚+49=16𝑚+49𝑚−2≤162√𝑚⋅49𝑚−2=43,当且仅当m=7即t=32时,
1+4𝑡3+𝑡2的最大值为43,可得m≥43,即m的最小值为43.故选:B.17.解:(1)关于x的不等式2kx2+kx﹣1<0的解集为(−32,𝟏),所以−32和1是方程2kx2+kx﹣1=0的两个实数根,代入x=1得2k
+k﹣1=0,解得k=13;(2)若不等式2kx2+kx﹣1<0的解集为R,则k=0时,不等式为﹣1<0,满足题意;k≠0时,应满足{𝒌<𝟎△=𝒌𝟐+𝟖𝒌<𝟎,解得﹣8<k<0;综上知,实数k的取值范围是﹣8<k≤0.18.【解析】(1)由()35
0,0,cos,cos22513=+=,所以()412sin,sin513=+=.()()()sinsinsincoscossin=+−=+−+,则1
235416sin13513565=−=(2)因为35=cos,4sin5=.所以22222432sin22sincos5512coscos22cossin34255===+
−−.19.解:(1)因为3cos(23)cosaBcbA=−,由正弦定理可得3sincos(2sin3sin)cosABCBA=−,化简整理得3sin()2sincosABCA+=,因为ABC+=−,所以3sin2s
incosCCA=,因为sin0C,0A,所以3cos2A=,6A=.(2)因为2a=,23b=,6A=,所以sinsinabAB=,即223πsinsin6B=,解得3sin2B=,3B=或23,若3B=,则2C=,1=sin232ABCSabC△=;若23B=,则6C=
,1=sin32ABCSabC△=,故ABC的面积为3或23.20.解:(Ⅰ)设正项等比数列na的公比为q,由题意有312321321010aaaSaaa=++−=+=,∴220qq−−=,而0q,解得2q=,则有118310aa=+,即12a=,∴2nna=,
122nnS+=−,*nN.(Ⅱ)由(Ⅰ)知:()22(1log2)nnnnbSan=+=+.∴23223242...(1)2nnTn=+++++,23412223242...2(1)2nnnTn
n+=++++++,∴22311222...2(1)22nnnnTnn++−=++++−+=−,12nnTn+=.21.【详解】(1)函数()()44441111cossincossincossinsin22222fxxxxxxxx=−−=−−()()()2222221111
cossincossinsin2cossinsin22222xxxxxxxx=−+−=−−()12cos2sin2cos2224xxx=−=+,所以最小正周期为T=,由2224kxk++,kZ
,解得388kxk−+,kZ所以单调减区间为,3,88kkkZ−+.(2)∵22cos2242AfA=+=−,∴cos14A+=−,∴34A=,∵2ABACAD+=,∴2232cos424b
cbc++=,∴2228bcbc+−=,∴22228222bcbcbc++−=,∴()222182bc−+,∴()221682222bc+=+−,当且仅当bc=时,取等号.所以22max()8(22)bc+=+.
22.解:(1)因为12nnaS+=+,所以()122nnaSn−=+,两式相减可得()122nnaan+=.因为12a=,所以2124aa=+=,所以212aa=.又120a=,240a=,12nnaa+=,所以()*0Nnan,所以()1*2Nnnana+=,所以
数列na是首项为2,公比为2的等比数列,所以2nna=,*Nn.又2222loglog22nnnban===,所以数列nb的通项公式为2nbn=,*Nn.(2)因为12311111111nnTbbbb=−−−−
,所以不等式1nnMTb+*Nn成立等价于1231111111121nMnbbbb−−−−+对一切*Nn成立,只需满足123max1111111121nMnbbbb
−−−−+即可.令()1231111111121ngnnbbbb=−−−−+,则()1231111
11111123ngnnbbbb++=−−−−+,因为2nbn=,所以11211=1022nnbnn−−−=,所以()0gn,而()()()123111123111
11111231123211111111121nnnnnbbbbgnbngnbnnbbbb+++−−−−++−+===+−−−−+
()()22212348312221484nnnnnnnn++++=++++,所以()()1gngn+,即()1231111111121ngnnbbbb=−−−−+递减,所以
()()max312gng==,所以实数M的取值范围为3,2+.