高中数学人教B版必修4教学教案:1.1.1 角的概念的推广 第一课时 含答案【高考】

DOC
  • 阅读 1 次
  • 下载 0 次
  • 页数 6 页
  • 大小 64.000 KB
  • 2024-11-06 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
高中数学人教B版必修4教学教案:1.1.1 角的概念的推广 第一课时 含答案【高考】
可在后台配置第一页与第二页中间广告代码
高中数学人教B版必修4教学教案:1.1.1 角的概念的推广 第一课时 含答案【高考】
可在后台配置第二页与第三页中间广告代码
高中数学人教B版必修4教学教案:1.1.1 角的概念的推广 第一课时 含答案【高考】
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的3 已有1人购买 付费阅读2.40 元
/ 6
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】高中数学人教B版必修4教学教案:1.1.1 角的概念的推广 第一课时 含答案【高考】.doc,共(6)页,64.000 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-2cee92bb4840abc9f24f01552a000608.html

以下为本文档部分文字说明:

-1-课题:角的概念推广(第一课时)教学目的:1.掌握用“旋转”定义角的概念,理解并掌握“正角”“负角”“象限角”“终边相同的角”的含义。2.掌握所有与α角终边相同的角(包括α角)的表示方法。3.从“射线绕着其端点旋转而形成角”的过程,培养学生用运动变化观点审视事物,从而深刻理解推广后的角的概念

。教学重点:理解并掌握正角负角零角的定义,掌握终边相同的角的表示方法。教学难点:终边相同的角的表示。设计理念:本节主要介绍推广角的概念,引入正角、负角、零角的定义,象限角的概念,终边相同的角的表示方法。树立运动变化的观点,理解静是相对的,动是绝对的,并由此

深刻理解推广后的角的概念。教学方法可以选为讨论法,通过实际问题,使角的推广变得更为必要,如螺丝扳手紧固螺丝、时针与分针、车轮的旋转等等,都能形成角的概念,给学生以直观的印象,形成正角、负角、零角的概念,突出角的概念的理解与掌握。通过具体问题

,让学生从不同角度作答,理解终边相同的角的概念,并给以表示,从特殊到一般,归纳出终边相同的角的表示方法,达到突破难点之目的。教学过程:一、复习引入:-2-1.回忆:初中是如何定义角的?从一个点出发引出的两条射线构成的几何图形。这种概念的优点是形象、直观、容易理解,角的范围是0°≤

α≤360°,但其仅从图形的形状来定义角,弊端在于“狭隘”。2.生活中很多实例会不在范围0°≤α≤360°内。如:体操运动员转体,跳水运动员向内、向外转体经过1小时时针、分针、秒针转了多少度?这些例子不仅不在范围,而且方向不同,有必要将角的概念推广到任意角,用运动的思想来研究角的概念。二、讲解新

课:1.角的概念的推广⑴“旋转”形成角一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到另一位置OB,就形成角α.旋转开始时的射线OA叫做角α的始边,旋转终止的射线OB叫做角α的终边,射线的端点O叫做角

α的顶点.突出“旋转”注意:“顶点”“始边”“终边”⑵.“正角”与“负角”“零角”我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,“正角”与“负角”是由旋转的方向决定的。特别地,当一条射线没有作任何旋转时,我们也认为这时形成了一个角,并把这个角叫做零角.⑶

意义-3-用“旋转”定义角之后,角的范围大大地扩大了。1°角有正负之分如:a=210°b=-150°g=660°2°角可以任意大实例:体操动作:旋转2周(360°×2=720°)3周(360°×3=1080°)3°还有零角一条射线,没有旋转角的概念推广以后,它包括任意大小的正角、负

角和零角.要注意,正角和负角是表示具有相反意义的旋转量。2.“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角角的顶点与坐标原点重合,角的始边与轴的正半轴重合,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角(角的终边落在坐标轴上,则此角不属于任何一

个象限,我们称其为界限角)下面由学生自己分别举出终边在一、二、三、四象限的角以及界限角(各举两例)例如:30°、390°、-330°是第一象限角,-195°、120°是第二象限角,585°、1180°是第三象限角,300°、-60°是第四象限角。90°、0°、

-180°都是界限角。3.终边相同的角⑴观察:390°,-330°角,它们的终边都与30°角的终边相同⑵探究:终边相同的角都可以表示成一个0°到360°的角与个周角的和:390°=30°+360°-4--330°=

30°-360°30°=30°+0×360°对于任意一个角,若其终边与相同,那么它们之间都相差360°的整数倍。⑶结论:所有与角a终边相同的角连同a在内可以构成一个集合:{β|β=α+k·360°,k∈Z}(即:任何一个与角a终边相同的角,都可以表示成角a与整数个周角的和。)⑷

注意以下四点:(1)k∈Z;(2)a是任意角;(3)k·360°与a之间是“+”号,如-30°,应看成+(-30°);(4)终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360°的整数倍.三、讲解范例:例1:写出与下列各角终边相同的角的集合,并指出它们

是哪个象限的角(1)30°(2)135°(3)225°(4)300°解:(1)与30°终边相同的角的集合是A={β|β=30°+k·360°,k∈Z}因为30°是第一象限角,所以集合A中的角都是第一象限的角。-5-(2)与135°终边相同的角的集合是A={β|β=135

°+k·360°,k∈Z}因为135°是第二象限角,所以集合A中的角都是第二象限的角。(3)与225°终边相同的角的集合是A={β|β=225°+k·360°,k∈Z}因为225°是第三象限角,所以集合A中的角都是第三象限的角。(4)300°与终边相同的角的集合是A={β|β=300°+k

·360°,k∈Z}因为300°是第四象限角,所以集合A中的角都是第四象限的角。四、课堂练习:1.锐角是第几象限的角?第一象限的角是否都是锐角?小于90°的角是锐角吗?(答:锐角是第一象限角;第一象限角不一定是锐角;小于90°的角可能是零角或

负角故它不一定是锐角)2.已知角的顶点与坐标系原点重合,始边落在x轴的正半轴上,作出下列各角,并指出它们是哪个象限的角?(1)420°,(2)-75°,(3)855°,(4)-510°.(答:(1)第一象限角,(2)第四象限角,(3)

第二象限角,(4)第三象限角)作图时应注意:顶点与坐标系原点重合,始边落在x轴的正半轴上(图略)五、小结:-6-本节课我们学习了正角、负角和零角的概念,象限角的概念,要注意如果角的终边在坐标轴上,就认为这个角不属于任何象限.本节课重点是学习终边相同的角的表示法.严格区分“终边相同”和“角相

等”;“界限角”“象限角”;“小于90°的角”“第一象限角”和“锐角”的不同意义.六、课后作业:1.下列命题中正确的是()A.第一象限的角一定不是负角B.第二象限角一定是钝角C.第四象限角一定是负角D.若β=α+k·360°

(k∈Z),则α与β终边相同2.下列角中,与终边相同的角是()A.B.C.D.3.如果,那么角是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.若角α与β终边相同,则一定有()A.α+β=180°B.α+β=0°C.α-β=k·36

0°,k∈ZD.α+β=k·360°,k∈Z5.钟表经过4小时,时针与分针各转了(填度).6.在直角坐标系中,作出下列各角,并判断各为第几象限角(或界限角).(1)360°

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 327868
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?