福建省泉州市2022届高三上学期8月高中毕业班质量监测(一)数学试题(参考答案)(22题)

PDF
  • 阅读 1 次
  • 下载 0 次
  • 页数 3 页
  • 大小 193.974 KB
  • 2024-09-20 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
福建省泉州市2022届高三上学期8月高中毕业班质量监测(一)数学试题(参考答案)(22题)
可在后台配置第一页与第二页中间广告代码
福建省泉州市2022届高三上学期8月高中毕业班质量监测(一)数学试题(参考答案)(22题)
可在后台配置第二页与第三页中间广告代码
福建省泉州市2022届高三上学期8月高中毕业班质量监测(一)数学试题(参考答案)(22题)
可在后台配置第三页与第四页中间广告代码
在线阅读已结束,您可下载此文档进行离线阅读 已有0人下载 下载文档3.00 元
/ 3
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】福建省泉州市2022届高三上学期8月高中毕业班质量监测(一)数学试题(参考答案)(22题).pdf,共(3)页,193.974 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-21de2471101a0d6d48ccc01d0ca242d6.html

以下为本文档部分文字说明:

泉州市2022届高中毕业班质量检测(一)数学试题第1页(共3页)泉州市2022届高中毕业班质量监测(一)2021.08数学参考答案及评分细则(第22题)22.(12分)已知函数ln1xfxax.(1)讨论()fx的单调性;(2)若2112xxex

ex(e是自然对数的底数),且12120,0xxxx,,证明:22122xx.【命题意图】本小题主要考查运用导函数求单调性、对数运算性质、函数极值点偏移、不等式放缩、基本不等式等基础知识;考查抽象概括、推理论证、运算求解等能力;考查函数与方程、化归与转化、分类与整合等数学

思想;体现综合性、应用性与创新性,导向对发展逻辑推理、数学运算、数学抽象、数学建模等核心素养的关注.鉴于高三复习前测特点,适当提高试题前半部分基础性应用的分值分配比例.【试题简析】(1)由2lnxfxax,.................................

........................................................................1分令0fx,得1x,...........................................................

.............................2分当0a时,若0,1x时,0fx;若1,x时,0fx..............3分所以()fx在0,1上单调递增,在1,上单调递减.............................

...........4分当0a时,若0,1x时,0fx;若1,x时,0fx.所以()fx在0,1上单调递减,在1,上单调递增.....................

.......................5分综上,当0a时,()fx在0,1上单调递增,在1,上单调递减;当0a时,()fx在0,1上单调递减,在1,上单调递增.(2)证明:由2112xxexex,

两边取对数,得2112lnlnxexxex()(),............................6分即2112ln1ln1xxxx,所以1212ln1ln1xxxx,保密★启用用前泉州市2022届高中

毕业班质量检测(一)数学试题第2页(共3页)此即当1a时,存在12120,0xxxx,,满足12fxfx.解法1:由(1)可知,当1a时,()fx在0,1上单调递增,在1,上单调递减,不妨令

12xx,所以120,1,1,xx............................................................7分①若22,x,则22212224xxx显然成立......

....................................8分【注:亦可讨论,2,2x,则2221222xxx.】【强化特例、容易优先原则】②若21,2x,则220,1x,记

ln2ln112,0122xxgxfxfxxxxxx,所以222222ln11ln2ln2lnln02xxxxxgxxxxxx

,...9分所以gx在0,1上单调递增,所以10gxg,即2fxfx,所以1122fxfxfx......................

.......................................................10分因为10,1x,所以121x,又21x,()fx在1,上单调递减,所以122xx,即122xx..

...............................................................................11分又2222111222212,2211xxxx

xx,以上两式左右两端分别相加,得221212211xxxx,即221212222xxxx....................12分综合①②,证得22122xx.解法2:由(1)可知,当1a时,()fx在0,1上单调递增,在

1,上单调递减,所以()(1)1fxf.当1,x时,ln10xfxx;由于10fe,故()fx在,11e上恒有()0fx.....................................7分不妨令12xx,记

12fxfxm,则0,1m,且11ln1xmx,22ln1xmx,以上两式相减得,2211lnxmxxx,泉州市2022届高中毕业班质量检测(一)数学试题第3页(共3页)记21xtx,由12xx,知1,t

,1ln1xtmt,2ln1xttmt,故121ln1xxttmt.............................................8分记21ln11mtgtttt,22141tmgttt

,.................................9分又214t,44m,所以0gt.............................................................10分所以()gt在1,上单调递增,

所以()(1)0gtg,所以21ln01mttt,可知121ln21xxttmt....................................11分即2221212)42

22xxxx(...........................................................................12分

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 326073
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?