【文档说明】(新八省专用,测试范围:人教A版2019必修第一册第一章_第三章)高一数学期中模拟卷(参考答案)(新八省专用).docx,共(4)页,167.194 KB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-1d5352161c3b1a3d7f6ceaef4132319f.html
以下为本文档部分文字说明:
2024-2025学年高一数学上学期期中模拟卷参考答案第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。12345678BDACCDA
C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.91011ABDACDAB第二部分(非选择题共92分)三、填空题:本题共3小题,每小题
5分,共15分。12.4313.2514.()2,0,3−+四、解答题:本题共5小题,共77分。解答应写出文字说明、证明过程或演算步棸。15.(13分)【详解】(1)当1a=时,1,12A=−,)1,2,2
RB=−−+ð,所以()(),12,RAB=−+ð;......................................................................
.................(5分)(2)3,22aaA−=−,因为ABAAB=,......................................................(7分
)又因为A,所以122a−−且322a−,解得,(1,1a−.....................................(13分)16.(15分)【详解】(1)由题意,函数2(1)243fxxx+=++,令1tx=+,则22()2(1)4(1)321ftttt=
−+−+=+,所以2()21fxx=+...............................................................................................................(5分)
(2)由(1)知2()21fxx=+,即不等式转化为()22120xaxa+−−,..........................................................................
(7分)则()(21)0xax−+,..................................................................................................
........(8分)当12a−时,不等式的解集为1{|2xx−或}xa;.....................................................(10分)当12a−时,不等式
的解集为{|xxa或1}2x−;......................................................(12分)当12a=−时,不等式的解集为1{|}2xx−;.............................
.......................................(14分)综上所述,当12a−时,不等式的解集为1{|2xx−或}xa;当12a−时,不等式的解集为{|xxa或1}2
x−;当12a=−时,不等式的解集为1{|}2xx−......................................................................(15分)1
7.(15分)【详解】(1)若存在x使()0fx成立,则()21Δ424202k=−−,...........................................................................
...............(2分)解得3k或1k,所以k的取值范围是()()3,,1+−;................................................
...........................(5分)(2)当0k=时,()()2213242122fxxxx=−+=−−,为对称轴是1x=开口向上的抛物线,因为12aa+,所以1a,......................................
.........................................................(7分)当11a+即0a时,()()()22min331211222fxfaaa=+=+−−=−;..............
................................................(9分)当211aa+即102a时,()()()2min33121122fxf==−−=−;...
.............................................................................(11分)当21a即112a时,()()()22min3122
218822fxfaaaa==−−=−+;............................................................(13分)综上所述,当0a时,()2min322fxa=−;当102a时,()min32fx=−;当112a
时,()2min1882fxaa=−+...............................................................................(15分)18.(17分)【详解】(1)由题意,利润212202010000,0120()(
)()5025488102010000,120xxxxWxSxCxxxx+−−=−=+−−,所以2120010000,0120()()()501548810,120xxxWxSxCxxx+−=−=
−............................................(7分)(2)由(1)知,当0120x时,()2211()2001000050005100005050Wx
xxx=+−=+−,()Wx在()0,120上单调递增,所以()()12014288WxW=,..........................................(11分)当120x时,()1548810Wxx=−在()120,+上单调递减,所以()()120
154881012014288WxW=−=..................................................................(16分)综上,为使该商品的利润最大化,产量为120百件.............................
............................(17分)19.(17分)【详解】(1)函数2()4axbfxx+=+是定义在()2,2−上的奇函数,则()00f=,即有0b=,..............................................
.......................................................(2分)且()115f=,则1145a=+,解得1a=,..............................................................
................(4分)则函数()fx的解析式:()24xfxx=+,22x−,因为满足()()fxfx−=−,所以()fx是奇函数,即()24xfxx=+.......................................................
................................................................(7分)(2)证明:设任意,mn满足22mn−,则()()()()()()222244444mnmnmnfmfnmnmn
−−−=−=++++,.......................................................(10分)由于22mn−,则0mn−,4mn,即40mn−,又()()22440mn++,则有()()0fmfn−,即()
()fmfn,则()fx在()2,2−上是增函数..............................................................................
...............(13分)(3)由(2)知,函数()fx在)1,2−上是增函数,.......................................................(14分)所以(1)()(2)ffxf−,即11()54fx−,....
.............................................................(16分)所以函数()fx在)1,2−上的值域为11,54−..................
...................................................(17分)