【文档说明】四川省遂宁市射洪中学2022-2023学年高二上学期第一次月考试题(10月) 数学(理)答案.pdf,共(9)页,419.966 KB,由管理员店铺上传
转载请保留链接:https://www.doc5u.com/view-1c8b66adb3652751a8dfd1bfb3a5fd63.html
以下为本文档部分文字说明:
1射洪中学高2021级高二上期第一次月考数学试题(理科)参考答案一、选择题123456789101112ABCDDBBBCADD12.【解析】分别取AB中点G,AC中点H,连结GE,GF,EH,FH,A
F,如图所示,则FEA,FEG,FEH,2aEH,2aEG,aFG613由PABC是正四面体(所有棱长都相等的四面体),设正面体的棱长为a∴根据余弦定理可得2279AFa,22736GFa∴
22222719494cos22aaEFaEFaEFaEF,22222743618cos22aaEFaEFaEFaEF,aEFaEFaEFaaEF||912||236134cos22222∴coscoscos,且,为
锐角∴二、填空题2.16120.1560.144.130216.如图,连接,,,ABBCACBD,由于ABCDABCD为正方体,得DD平面ABCD,则DDAC,又因为BDAC,且BDDDD,可得AC平面BDD
,则BDAC,同理BDAB,又ACABA,得BD平面ABC,因为AMBD,且AM平面ABC,又因为M平面BCCB,所以点M在BC上移动,因为AB平面BCCB,所以AMB,在RtAMB中,tanABBM,当BM最小时,t
an最大,即当BMBC时,BM最小,此时322BCBBBMBC,所以tan的最大值为32322,故答案为:2.三、解答题ACDEFACDACACDEFACEFBCABFE面面,面中点分别为////,,)1.(17
(2)由(1)知//EFAC.F,M分别是BC,CD的中点,可得//FMBD.EFM即为异面直线AC与BD所成的角(或其补角).在EFM△中,EF=FM=EM=1,EFM△为等边三角形∠EFM=60°,....................................
..........................................3分.........................................................
.....................5分................................7分.................................................
.............................9分3即异面直线AC与BD所成的角为60°.18.(1)解:取BC的中点O,连接,OAOP,则9122,413OPOA,故1222222P
ACPABPBCSSS,所以正三棱锥PABC的侧面积为26;(2)过点M作直线EFBC∥,则EF为所求直线.理由如下:在正三棱锥PABC中,O为BC的中点,则,OABCOPBC,又,,OAOPOOAOP平面OAP,BC平面OAP,又PA平
面OAP,PABC,又EFBC∥,EFPA.19.证明:(1)E为PA的中点,O为AC的中点//EOPC又EO平面PCD,PC平面PCD//EO平面PCD同理可证,//FO平面PCD,又EFOFOEFOEOOFOEO
面面,,平面//EFO平面PCD.(2)PA⊥平面ABCD,BD平面ABCD.....................................................................10分
.....................................................................5分....................................................
.6分.....................................................................9分.....................................................................10
分.....................................................................12分.....................................................................2
分.....................................................................3分.........5分.................................
....................................6分4PABD底面ABCD是菱形ACBD,又PAACABD⊥平面PAC又BD平面PBD平面PAC⊥平面PBD.20.(1)证明:四边形ABCD是正方形,F是AC
的中点,B,F,D三点共线,且F是BD的中点,又E是PB的中点,//EFPD,又EF平面PCD,PD平面PCD,//EF平面PCD.(2)PA平面ABCD,E是PB的中点,E到平面ABCD的距离为112
2PA,四边形ABCD是正方形,1AB,1144ABFABCDSS正方形,三棱锥EABF的体积为:111413422EABFV.21(1)由题意,三棱柱111ABCABC为直三棱柱1CCBC,又ACBC,1ACCCC,AC平面11ACCA,1CC平
面11ACCA,BC平面11ACCA,又1AC平面11ACCA.....................................................................8分...................................
..................................9分.....................................................................10分............................
.........................................12分.....................................................................4分............
.........................................................6分.....................................................................8分..............
....................10分....................................................12分..................................................................
...2分51BCAC,又11BCBC,111BCAC,在RtABC中,22AB,2BC,ACBC,2AC,又12AA,四边形11ACCA为正方形11ACAC.111
1BCACC,11BC平面11ABC,1AC平面11ABC,1AC平面11ABC.(2)当点E为AB的中点时,DE平面11ABC.证明如下:取1BB的中点F,分别连接EF,FD,DE,E,F分别为AB,1BB的中点1
EFAB∥又1AB平面11ABC,EF平面11ABCEF∥平面11ABC,D,F分别是直三棱柱111ABCABC侧棱1CC,1BB的中点11DFBC,又DF平面11ABC,11BC
平面11ABCDF平面11ABC,又∵EFDFFI,EF平面DEF,DF平面DEF平面DEF平面11ABC.又DE平面DEFDE平面11ABC........................................................
..............4分...........................................................7分.........................................................
............9分.....................................................................3分.....................
................................................6分.....................................................................
10分.....................................................................11分.....................................
................................12分622.(1)在翻折过程中总有平面PBD平面PAG,证明如下:∵点M,N分别是边CD,CB的中点,又60DAB,∴BDMN∥,且PMN是等边三
角形,∵G是MN的中点,∴MNPG,∵菱形ABCD的对角线互相垂直,∴BDAC,∴MNAC,∵ACPGG,AC平面PAG,PG平面PAG,∴MN平面PAG,∴BD平面PAG,∵BD平面PBD,∴平面PBD平面P
AG.(2)由题意知,四边形MNDB为等腰梯形,且4DB,2MN,13OG,所以等腰梯形MNDB的面积243332S,要使得四棱锥PMNDB体积最大,只要点P到平面MNDB的距离最大即可,∴当P
G平面MNDB时,点P到平面MNDB的距离的最大值为3,直线PB和平面MNDB所成角的为PBG,连接BG,在直角三角形PBG中,3PG,7BG,由勾股定理得:2210PBPGBG.330sin1010PGPBGPB.的平面角为二面角面
面又面面)知,:由(几何法法PMNQPQGQGMNPAGQGPAGMNMNPGAGPGABMNDMNAGABMNDPG,,,,2)(1)3(...............
...................................1分.................................................2分..............
...................................3分.................................................4分............................5分..
..........................8分............................6分............................9分7的中点为为锐角,又由题
可得中,在PAQPQQGAQGQPPGNPGQPAGPGQPAGPAGPAPGAGPGQAGQPAGRtPGQ1010303sin303,331010cossin1
010|cos|法2:(空间直角坐标系法)假设符合题意的点Q存在.以G为坐标原点,GA,GM,GP所在直线分别为x轴、y轴、z轴,建立如图所示空间直角坐标系,则33,0,0A,0,1,0M,0,1,0N,0,0,3P,由(2)知
,AGPG,又AGMN,且MNPGG,MN平面PMN,PG平面PMN,AG平面PMN,............................10分............................12分8故平面PMN的一个法向量为
11,0,0nur,设AQAP(01≤≤),∵33,0,3AP,33,0,3AQ,故331,0,3,∴0,2,0NM,331,1,3QM,平面QMN的一个法向量为2222,,
nxyz,则20nNM,20nQM,即222220,33130,yxyz令21z,所以220,31yx
211,0,1,0,313131n,则平面QMN的一个法向量,0,31n,设二面角QMNP的平面角为,则122110cos1091nnnn,解得:12,故符合题意的点
Q存在且Q为线段PA的中点.............................9分............................10分............................11分............................12分获得更多资源请扫
码加入享学资源网微信公众号www.xiangxue100.com