2021-2022学年高一数学人教A版必修1教学教案:1.1.2 集合间的基本关系 (1) 含解析【高考】

DOC
  • 阅读 1 次
  • 下载 0 次
  • 页数 4 页
  • 大小 702.500 KB
  • 2024-11-06 上传
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
此文档由【小赞的店铺】提供上传,收益归文档提供者,本网站只提供存储服务。若此文档侵犯了您的版权,欢迎进行违规举报版权认领
2021-2022学年高一数学人教A版必修1教学教案:1.1.2 集合间的基本关系 (1) 含解析【高考】
可在后台配置第一页与第二页中间广告代码
2021-2022学年高一数学人教A版必修1教学教案:1.1.2 集合间的基本关系 (1) 含解析【高考】
可在后台配置第二页与第三页中间广告代码
2021-2022学年高一数学人教A版必修1教学教案:1.1.2 集合间的基本关系 (1) 含解析【高考】
可在后台配置第三页与第四页中间广告代码
试读已结束,点击付费阅读剩下的1 已有1人购买 付费阅读2.40 元
/ 4
  • 收藏
  • 违规举报
  • © 版权认领
下载文档3.00 元 加入VIP免费下载
文本内容

【文档说明】2021-2022学年高一数学人教A版必修1教学教案:1.1.2 集合间的基本关系 (1) 含解析【高考】.doc,共(4)页,702.500 KB,由小赞的店铺上传

转载请保留链接:https://www.doc5u.com/view-0c57a57a376ea35a3e87777d91be18f6.html

以下为本文档部分文字说明:

-1-1.1.2集合间的基本关系的教学设计教学分析课本从学生熟悉的集合(自然数的集合、有理数的集合等)出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方

法,如类比等.值得注意的问题:在集合间的关系教学中,建议重视使用Venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,例如∈与的区别.三维目标1.理解集合之间包含与相等的含义

,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力.2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.重点难点教学重点:理解集合间包含与相等的含义.教学难点:理解空集的含义.课时

安排1课时教学过程导入新课思路1.实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?(让学生自由发言,教师不要急于作出判断,而是继续引导学生)欲知谁正确,让我们一起来观察、研探.思路2.复习元素与集合的关系——属于与不属于的关系,填空:(

1)0N;(2)2Q;(3)-1.5R.类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?(答案:(1)∈;(2)∈;(3)∈)推进新课新知探究提出问题(1)观察下面几个例子:①A={1,2,3},B=

{1,2,3,4,5};②设A为海林高中高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;③设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};④E={2,4,6},F={6,4,2}.你能发现两个集合间有什么关系吗?(2)例子①中

集合A是集合B的子集,例子④中集合E是集合F的子集,同样集合F是集合子集,有什么区别?(3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论?(4)按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然

.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?(5)试用Venn图表示例子①中集合A和集合B.(6)已知AB,试用Venn图表示集合A和B的关系.(7)任何方程的解都能组

成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?(8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?(9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类

比,在集合中,你能得出什么结论?活动:教师从以下方面引导学生:(1)观察两个集合间元素的特点.(2)从它们含有的元素间的关系来考虑.规定:如果AB,但存在x∈B,且xA,我们称集合A是集合B的真-2-;(2);(3)∈)推进新课新知探究提出问题(1)观

察下面几个例子:①A={1,2,3},B={1,2,3,4,5};②设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;③设C={x|x是两条边相等的三角形},D={x|x是等腰三角形};④E={2,4,6},F={6,4,2}.你能发现两个集合

间有什么关系吗?(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同样是子集,有什么区别?(3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论?(4)按升国旗时,每个班的同学都聚集

在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?(5)试用Venn图表示例子①中集合A和集合B.(6)已知AB,试

用Venn图表示集合A和B的关系.(7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?(8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没

有任何元素,应该如何命名呢?(9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论?活动:教师从以下方面引导学生:(1)观察两个集合间元素的特点.(2)从它们含有的元素间的关系来考虑.规定:如果AB,但存在x∈B,且xA,我们称集合A是集合B的真子集,记作AB(

或BA).(3)实数中的“≤”类比集合中的.(4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图.(5)封闭曲线可以是矩形也可以是椭圆等等,没有

限制.(6)分类讨论:当AB时,AB或A=B.(7)方程x2+1=0没有实数解.(8)空集记为,并规定:空集是任何集合的子集,即A;空集是任何非空集合的真子集,即A(A≠).(9)类比子集.讨论结果:(1)①

集合A中的元素都在集合B中;②集合A中的元素都在集合B中;③集合C中的元素都在集合D中;④集合E中的元素都在集合F中.可以发现:对于任意两个集合A,B有下列关系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.-3-(2)例子①中AB,但有一个元素4∈B,且4A;而例

子②中集合E和集合F中的元素完全相同.(3)若AB,且BA,则A=B.(4)可以把集合中元素写在一个封闭曲线的内部来表示集合.(5)如图1121所示表示集合A,如图1122所示表示集合B.图1-1-2-1图1-1-2-2(6)如图1-1-2-3和图1-1-2-4所示.图1-1

-2-3图1-1-2-4(7)不能.因为方程x2+1=0没有实数解.(8)空集.(9)若AB,BC,则AC;若AB,BC,则AC.典例分析1.已知集合A={-1,3,2m-1},集合B={3,m2}.若BA,则实数m=_______.活动:先让学生思考BA的含义,根据B

A,知集合B中的元素都属于集合A,集合元素的互异性,列出方程求实数m的值.因为BA,所以3∈A,m2∈A.对m2的值分类讨论.解:∵BA,∴3∈A,m2∈A.∴m2=-1(舍去)或m2=2m-1.解得m=1.∴m=1.答案:1点评:本题

主要考查集合和子集的概念,以及集合元素的互异性.本题容易出现m2=3,其原因是忽视了集合元素的互异性.避免此类错误的方法是解得m的值后,再代入验证.讨论两集合之间关系时,通常依据相关的定义,观察这两个集合元素的关系,转化为解方程或解不等式.变式训练已知集合M={x|2-x<0},集合N={x|

ax=1},若NM,求实数a的取值范围.分析:集合N是关于x的方程ax=1的解集,集合M={x|x>2}≠,由于NM,则N=或N≠,要对集合N是否为空集分类讨论.解:由题意得M={x|x>2}≠

,则N=或N≠.当N=时,关于x的方程ax=1中无解,则有a=0;当N≠时,关于x的方程ax=1中有解,则a≠0,此时x=a1,又∵NM,∴a1∈M.∴a1>2.∴0<a<21.综上所得,实数a的取值范围是a=0或0<a<21,即实数a的取值范围是{a|0≤a<21}

2.(1)分别写出下列集合的子集及其个数:,{a},{a,b},{a,b,c}.(2)由(1)你发现集合M中含有n个元素,则集合M有多少个子集?活动:学生思考子集的含义,并试着写出子集.(1)按子集中所含元素的个数分类写出子集;(

2)由(1)总结当n=0,n=1,n=2,n=3时子集的个数规律,归纳猜想出结论.答案:(1)的子集有:,即有1个子集;{a}的子集有:、{a},即{a}有2个子集;{a,b}的子集有:、{a}、{b}、{a,b},即{a,b}有4个子集;-4-{a,b,c}的子集有:、{a}、{b}

、{c}、{a,b}、{a,c}、{b,c}、{a,b,c},即{a,b,c}有8个子集.(2)由(1)可得:当n=0时,有1=20个子集;当n=1时,集合M有2=21个子集;当n=2时,集合M有4=22个子

集;当n=3时,集合M有8=23个子集;因此含有n个元素的集合M有2n个子集.变式训练已知集合A{2,3,7},且A中至多有一个奇数,则这样的集合A有……()A.3个B.4个C.5个D.6个分析:对集合A所含元素的个数分类讨论.A=或{2}或{3}或{7}或{2,3}或{2,7}共有

6个.答案:D点评:本题主要考查子集的概念以及分类讨论和归纳推理的能力.集合M中含有n个元素,则集合M有2n个子集,有2n-1个真子集,记住这个结论,可以提高解题速度.写一个集合的子集时,按子集中元素的个数来写不易发生重复和遗漏现象.知能训练课本P7练习1、

2.课堂小结本节课学习了:①子集、真子集、空集、Venn图等概念;②能判断存在子集关系的两个集合谁是谁的子集,进一步确定其是否是真子集;③清楚两个集合包含关系的确定,主要靠其元素与集合关系来说明.作业课本P11习题1.1A组5.设计感想本节教学设计注重引

导学生通过类比来获得新知,在实际教学中,要留给学生适当的思考时间,使学生自己通过类比得到正确结论.丰富学生的学习方式、改进学生的学习方法是高中数学课程追求的基本理念,学生的数学学习活动不能仅限于对概念、

结论和技能的记忆、模仿和接受,独立思考、自主探索、合作交流、阅读自学等都应成为学生学习数学的重要方式.

小赞的店铺
小赞的店铺
天天写文档,写文档,文档
  • 文档 326073
  • 被下载 21
  • 被收藏 0
若发现您的权益受到侵害,请立即联系客服,我们会尽快为您处理。侵权客服QQ:12345678 电话:400-000-0000 (支持时间:9:00-17:00) 公众号
Powered by 太赞文库
×
确认删除?